Deriving Treatment Decision Support From Dutch Electronic Health Records by Exploring the Applicability of a Precision Cohort–Based Procedure for Patients With Type 2 Diabetes Mellitus: Precision Cohort Study

Author:

Pinho XavierORCID,Meijer WillemijnORCID,de Graaf AlbertORCID

Abstract

Background The rapidly increasing availability of medical data in electronic health records (EHRs) may contribute to the concept of learning health systems, allowing for better personalized care. Type 2 diabetes mellitus was chosen as the use case in this study. Objective This study aims to explore the applicability of a recently developed patient similarity–based analytics approach based on EHRs as a candidate data analytical decision support tool. Methods A previously published precision cohort analytics workflow was adapted for the Dutch primary care setting using EHR data from the Nivel Primary Care Database. The workflow consisted of extracting patient data from the Nivel Primary Care Database to retrospectively generate decision points for treatment change, training a similarity model, generating a precision cohort of the most similar patients, and analyzing treatment options. This analysis showed the treatment options that led to a better outcome for the precision cohort in terms of clinical readouts for glycemic control. Results Data from 11,490 registered patients diagnosed with type 2 diabetes mellitus were extracted from the database. Treatment-specific filter cohorts of patient groups were generated, and the effect of past treatment choices in these cohorts was assessed separately for glycated hemoglobin and fasting glucose as clinical outcome variables. Precision cohorts were generated for several individual patients from the filter cohorts. Treatment options and outcome analyses were technically well feasible but in general had a lack of statistical power to demonstrate statistical significance for treatment options with better outcomes. Conclusions The precision cohort analytics workflow was successfully adapted for the Dutch primary care setting, proving its potential for use as a learning health system component. Although the approach proved technically well feasible, data size limitations need to be overcome before application for clinical decision support becomes realistically possible.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3