Prevalence Patterns and Onset Prediction of High Myopia for Children and Adolescents in Southern China via Real-World Screening Data: Retrospective School-Based Study

Author:

Guan JieyingORCID,Zhu YingtingORCID,Hu QiuyueORCID,Ma ShuyueORCID,Mu JingfengORCID,Li ZhidongORCID,Fang DongORCID,Zhuo XiaohuaORCID,Guan HaifeiORCID,Sun QianhuiORCID,An LinORCID,Zhang ShaochongORCID,Qin PeiwuORCID,Zhuo YehongORCID

Abstract

Background Patients with high myopia have an increased lifetime risk of complications. The prevalence patterns of high myopia in children and adolescents in southern China are unclear. Early identification of high-risk individuals is critical for reducing the occurrence and development of high myopia and avoiding the resulting complications. Objective This study aimed to determine the prevalence of high myopia in children and adolescents in southern China via real-world screening data and to predict its onset by studying the risk factors for high myopia based on machine learning. Methods This retrospective school-based study was conducted in 13 cities with different gross domestic products in southern China. Through data acquisition and filtering, we analyzed the prevalence of high myopia and its association with age, school stage, gross domestic product, and risk factors. A random forest algorithm was used to predict high myopia among schoolchildren and then assessed in an independent hold-out group. Results There were 1,285,609 participants (mean age 11.80, SD 3.07, range 6-20 years), of whom 658,516 (51.2%) were male. The overall prevalence of high myopia was 4.48% (2019), 4.88% (2020), and 3.17% (2021), with an increasing trend from the age of 11 to 17 years. The rates of high myopia increased from elementary schools to high schools but decreased at all school stages from 2019 to 2021. The coastal and southern cities had a higher proportion of high myopia, with an overall prevalence between 2.60% and 5.83%. Age, uncorrected distance visual acuity, and spherical equivalents were predictive factors for high myopia onset in schoolchildren. The random forest algorithm achieved a high accuracy of 0.948. The area under the receiver operator characteristic curve (AUC) was 0.975. Both indicated sufficient model efficacy. The performance of the model was validated in an external test with high accuracy (0.971) and a high AUC (0.957). Conclusions High myopia had a high incidence in Guangdong Province. Its onset in children and adolescents was well predicted with the random forest algorithm. Efficient use of real-world data can contribute to the prevention and early diagnosis of high myopia.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3