Using Bandit Algorithms to Maximize SARS-CoV-2 Case-Finding: Evaluation and Feasibility Study

Author:

Rayo Michael FORCID,Faulkner DariaORCID,Kline DavidORCID,Thornhill IV ThomasORCID,Malloy SamuelORCID,Della Vella DanteORCID,Morey Dane AORCID,Zhang NetORCID,Gonsalves GreggORCID

Abstract

Background The Flexible Adaptive Algorithmic Surveillance Testing (FAAST) program represents an innovative approach for improving the detection of new cases of infectious disease; it is deployed here to screen and diagnose SARS-CoV-2. With the advent of treatment for COVID-19, finding individuals infected with SARS-CoV-2 is an urgent clinical and public health priority. While these kinds of Bayesian search algorithms are used widely in other settings (eg, to find downed aircraft, in submarine recovery, and to aid in oil exploration), this is the first time that Bayesian adaptive approaches have been used for active disease surveillance in the field. Objective This study’s objective was to evaluate a Bayesian search algorithm to target hotspots of SARS-CoV-2 transmission in the community with the goal of detecting the most cases over time across multiple locations in Columbus, Ohio, from August to October 2021. Methods The algorithm used to direct pop-up SARS-CoV-2 testing for this project is based on Thompson sampling, in which the aim is to maximize the average number of new cases of SARS-CoV-2 diagnosed among a set of testing locations based on sampling from prior probability distributions for each testing site. An academic-governmental partnership between Yale University, The Ohio State University, Wake Forest University, the Ohio Department of Health, the Ohio National Guard, and the Columbus Metropolitan Libraries conducted a study of bandit algorithms to maximize the detection of new cases of SARS-CoV-2 in this Ohio city in 2021. The initiative established pop-up COVID-19 testing sites at 13 Columbus locations, including library branches, recreational and community centers, movie theaters, homeless shelters, family services centers, and community event sites. Our team conducted between 0 and 56 tests at the 16 testing events, with an overall average of 25.3 tests conducted per event and a moving average that increased over time. Small incentives—including gift cards and take-home rapid antigen tests—were offered to those who approached the pop-up sites to encourage their participation. Results Over time, as expected, the Bayesian search algorithm directed testing efforts to locations with higher yields of new diagnoses. Surprisingly, the use of the algorithm also maximized the identification of cases among minority residents of underserved communities, particularly African Americans, with the pool of participants overrepresenting these people relative to the demographic profile of the local zip code in which testing sites were located. Conclusions This study demonstrated that a pop-up testing strategy using a bandit algorithm can be feasibly deployed in an urban setting during a pandemic. It is the first real-world use of these kinds of algorithms for disease surveillance and represents a key step in evaluating the effectiveness of their use in maximizing the detection of undiagnosed cases of SARS-CoV-2 and other infections, such as HIV.

Publisher

JMIR Publications Inc.

Subject

Public Health, Environmental and Occupational Health,Health Informatics

Reference40 articles.

1. The COVID-19 testing debacle

2. LimDOllsteinANext testing debacle: The fall virus surgePolitico20206172022-06-20https://www.politico.com/news/2020/06/17/coronavirus-testing-fall-surge-327017

3. The Importance of Incorporating At-Home Testing Into SARS-CoV-2 Point Prevalence Estimates: Findings From a US National Cohort, February 2022

4. BosmanJKasakoveSStates close mass test and vaccine sites, but virus may swell anewNew York Times20223302023-07-05https://www.nytimes.com/2022/03/30/us/covid-vaccine-testing-states.html

5. COVID-19 Therapeutics for Nonhospitalized Patients

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3