Novel Approach for Detecting Respiratory Syncytial Virus in Pediatric Patients Using Machine Learning Models Based on Patient-Reported Symptoms: Model Development and Validation Study

Author:

Kawamoto ShotaORCID,Morikawa YoshihikoORCID,Yahagi NaohisaORCID

Abstract

Background Respiratory syncytial virus (RSV) affects children, causing serious infections, particularly in high-risk groups. Given the seasonality of RSV and the importance of rapid isolation of infected individuals, there is an urgent need for more efficient diagnostic methods to expedite this process. Objective This study aimed to investigate the performance of a machine learning model that leverages the temporal diversity of symptom onset for detecting RSV infections and elucidate its discriminatory ability. Methods The study was conducted in pediatric and emergency outpatient settings in Japan. We developed a detection model that remotely confirms RSV infection based on patient-reported symptom information obtained using a structured electronic template incorporating the differential points of skilled pediatricians. An extreme gradient boosting–based machine learning model was developed using the data of 4174 patients aged ≤24 months who underwent RSV rapid antigen testing. These patients visited either the pediatric or emergency department of Yokohama City Municipal Hospital between January 1, 2009, and December 31, 2015. The primary outcome was the diagnostic accuracy of the machine learning model for RSV infection, as determined by rapid antigen testing, measured using the area under the receiver operating characteristic curve. The clinical efficacy was evaluated by calculating the discriminative performance based on the number of days elapsed since the onset of the first symptom and exclusion rates based on thresholds of reasonable sensitivity and specificity. Results Our model demonstrated an area under the receiver operating characteristic curve of 0.811 (95% CI 0.784-0.833) with good calibration and 0.746 (95% CI 0.694-0.794) for patients within 3 days of onset. It accurately captured the temporal evolution of symptoms; based on adjusted thresholds equivalent to those of a rapid antigen test, our model predicted that 6.9% (95% CI 5.4%-8.5%) of patients in the entire cohort would be positive and 68.7% (95% CI 65.4%-71.9%) would be negative. Our model could eliminate the need for additional testing in approximately three-quarters of all patients. Conclusions Our model may facilitate the immediate detection of RSV infection in outpatient settings and, potentially, in home environments. This approach could streamline the diagnostic process, reduce discomfort caused by invasive tests in children, and allow rapid implementation of appropriate treatments and isolation at home. The findings underscore the potential of machine learning in augmenting clinical decision-making in the early detection of RSV infection.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3