Abstract
Background
Cardiac rehabilitation (CR) is an evidence-based approach for preventing secondary cardiac events. Smartphone apps are starting to be used in CR to give patients real-time feedback on their health, connect them remotely with their medical team, and allow them to perform their rehabilitation at home. The use of smartphone apps is becoming omnipresent and has real potential in impacting patients in need of CR.
Objective
This paper provides critical examinations and summaries of existing research studies with an in-depth analysis of not only the individual studies but also the larger patterns that have emerged with smartphone apps in CR as well as their significance for practice change.
Methods
A systematic review was conducted through broad database searches that focused on evaluating randomized controlled trials, in compliance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) expectations. A total of 43 articles were evaluated, and 6 were chosen for this review. The dates of the articles ranged from 2014-2020, and the studies focused on the population of cardiac outpatients who needed CR after suffering a cardiac event, with interventions using a smartphone that incorporated the CR standards of the American Heart Association. The outcomes measured were directed at focusing on improved exercise function capacity, valued at a significance level of P<.05, for improved 6-minute walk test (6MWT) and peak oxygen uptake (PVO2) results.
Results
In the evaluated articles, the results were inconsistent for significant positive effects of CR smartphone apps on cardiac patients’ physical function capacity in terms of the 6MWT and PVO2 when using a smartphone app to aid in CR.
Conclusions
Because evidence in the literature suggests nonhomogeneous results for successful use of smartphone apps in CR, it is crucial to investigate the potential reasons for this inconsistency. An important observation from this systematic review is that smartphone apps used in CR have better clinical outcomes related to physical function capacity if the app automatically records information or provides real-time feedback to participants about their progress, compared to apps that only educate and encourage use while requiring the participant to manually log their CR activities. Additional factors to consider during these studies include the starting health of the patients, the sample sizes, and the specific components of CR that the smartphone apps are using. Overall, more clinical trials are needed that implement smartphone apps with these factors in mind, while placing stronger emphasis on using biosensing capabilities that can automatically log results and send them to providers on a real-time dashboard.