Predicting Waist Circumference From a Single Computed Tomography Image Using a Mobile App (Measure It): Development and Evaluation Study

Author:

Masmoudi AbderrahmenORCID,Zouari AmineORCID,Bouzid AhmedORCID,Fourati KaisORCID,Baklouti SoulaimenORCID,Ben Amar MohamedORCID,Boujelben SalahORCID

Abstract

Abstract Background Despite the existing evidence that waist circumference (WC) provides independent and additive information to BMI when predicting morbidity and mortality, this measurement is not routinely obtained in clinical practice. Using computed tomography (CT) scan images, mobile health (mHealth) has the potential to make this abdominal obesity parameter easily available even in retrospective studies. Objective This study aimed to develop a mobile app as a tool for facilitating the measurement of WC based on a cross-sectional CT image. Methods The development process included three stages: determination of the principles of WC measurement from CT images, app prototype design, and validation. We performed a preliminary validity study in which we compared WC measurements obtained both by the conventional method using a tape measurement in a standing position and by the mobile app using the last abdominal CT slice not showing the iliac bone. Pearson correlation, student t tests, and Q-Q and Bland-Altman plots were used for statistical analysis. Moreover, to perform a diagnostic test evaluation, we also analyzed the accuracy of the app in detecting abdominal obesity. Results We developed a prototype of the app Measure It, which is capable of estimating WC from a single cross-sectional CT image. We used an estimation based on an ellipse formula adjusted to the gender of the patient. The validity study included 20 patients (10 men and 10 women). There was a good correlation between both measurements (Pearson R=0.906). The student t test showed no significant differences between the two measurements (P=.98). Both the Q-Q dispersion plot and Bland-Altman analysis graphs showed good overlap with some dispersion of extreme values. The diagnostic test evaluation showed an accuracy of 83% when using the mobile app to detect abdominal obesity. Conclusions This app is a simple and accessible mHealth tool to routinely measure WC as a valuable obesity indicator in clinical and research practice. A usability and validity evaluation among medical teams will be the next step before its use in clinical trials and multicentric studies.

Publisher

JMIR Publications Inc.

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3