Abstract
Background
Digital health technologies (DHTs) play an ever-expanding role in health care management and delivery. Beyond their use as interventions, DHTs also serve as a vehicle for real-world data collection to characterize patients, their care journeys, and their responses to other clinical interventions. There is a need to comprehensively map the evidence—across all conditions and technology types—on DHT measurement of patient outcomes in the real world.
Objective
We aimed to investigate the use of DHTs to measure real-world clinical outcomes using patient-generated data.
Methods
We conducted this systematic scoping review in accordance with the Joanna Briggs Institute methodology. Detailed eligibility criteria documented in a preregistered protocol informed a search strategy for the following databases: MEDLINE (Ovid), CINAHL, Cochrane (CENTRAL), Embase, PsycINFO, ClinicalTrials.gov, and the EU Clinical Trials Register. We considered studies published between 2000 and 2022 wherein digital health data were collected, passively or actively, from patients with any specified health condition outside of clinical visits. Categories for key concepts, such as DHT type and analytical applications, were established where needed. Following screening and full-text review, data were extracted and analyzed using predefined fields, and findings were reported in accordance with established guidelines.
Results
The search strategy identified 11,015 publications, with 7308 records after duplicates and reviews were removed. After screening and full-text review, 510 studies were included for extraction. These studies encompassed 169 different conditions in over 20 therapeutic areas and 44 countries. The DHTs used for mental health and addictions research (111/510, 21.8%) were the most prevalent. The most common type of DHT, mobile apps, was observed in approximately half of the studies (250/510, 49%). Most studies used only 1 DHT (346/510, 67.8%); however, the majority of technologies used were able to collect more than 1 type of data, with the most common being physiological data (189/510, 37.1%), clinical symptoms data (188/510, 36.9%), and behavioral data (171/510, 33.5%). Overall, there has been real growth in the depth and breadth of evidence, number of DHT types, and use of artificial intelligence and advanced analytics over time.
Conclusions
This scoping review offers a comprehensive view of the variety of types of technology, data, collection methods, analytical approaches, and therapeutic applications within this growing body of evidence. To unlock the full potential of DHT for measuring health outcomes and capturing digital biomarkers, there is a need for more rigorous research that goes beyond technology validation to demonstrate whether robust real-world data can be reliably captured from patients in their daily life and whether its capture improves patient outcomes. This study provides a valuable repository of DHT studies to inform subsequent research by health care providers, policy makers, and the life sciences industry.
Trial Registration
Open Science Framework 5TMKY; https://osf.io/5tmky/
Reference40 articles.
1. ShapiroMJohnstonDWaldJMonDPatient-generated health dataRTI International20122023-01-22https://www.rti.org/publication/patient-generated-health-data-white-paper
2. Digital Medicine: A Primer on Measurement
3. Quantifying the use of connected digital products in clinical research
4. Digital health technologies for remote data acquisition in clinical investigationsU.S. Food and Drug Administration2021122023-01-03https://www.fda.gov/media/155022/download
5. What Is Real-World Data? A Review of Definitions Based on Literature and Stakeholder Interviews