Objective Prediction of Next-Day’s Affect Using Multimodal Physiological and Behavioral Data: Algorithm Development and Validation Study

Author:

Jafarlou SalarORCID,Lai JocelynORCID,Azimi ImanORCID,Mousavi ZahraORCID,Labbaf SinaORCID,Jain Ramesh CORCID,Dutt NikilORCID,Borelli Jessica LORCID,Rahmani AmirORCID

Abstract

Background Affective states are important aspects of healthy functioning; as such, monitoring and understanding affect is necessary for the assessment and treatment of mood-based disorders. Recent advancements in wearable technologies have increased the use of such tools in detecting and accurately estimating mental states (eg, affect, mood, and stress), offering comprehensive and continuous monitoring of individuals over time. Objective Previous attempts to model an individual’s mental state relied on subjective measurements or the inclusion of only a few objective monitoring modalities (eg, smartphones). This study aims to investigate the capacity of monitoring affect using fully objective measurements. We conducted a comparatively long-term (12-month) study with a holistic sampling of participants’ moods, including 20 affective states. Methods Longitudinal physiological data (eg, sleep and heart rate), as well as daily assessments of affect, were collected using 3 modalities (ie, smartphone, watch, and ring) from 20 college students over a year. We examined the difference between the distributions of data collected from each modality along with the differences between their rates of missingness. Out of the 20 participants, 7 provided us with 200 or more days’ worth of data, and we used this for our predictive modeling setup. Distributions of positive affect (PA) and negative affect (NA) among the 7 selected participants were observed. For predictive modeling, we assessed the performance of different machine learning models, including random forests (RFs), support vector machines (SVMs), multilayer perceptron (MLP), and K-nearest neighbor (KNN). We also investigated the capability of each modality in predicting mood and the most important features of PA and NA RF models. Results RF was the best-performing model in our analysis and performed mood and stress (nervousness) prediction with ~81% and ~72% accuracy, respectively. PA models resulted in better performance compared to NA. The order of the most important modalities in predicting PA and NA was the smart ring, phone, and watch, respectively. SHAP (Shapley Additive Explanations) analysis showed that sleep and activity-related features were the most impactful in predicting PA and NA. Conclusions Generic machine learning–based affect prediction models, trained with population data, outperform existing methods, which use the individual’s historical information. Our findings indicated that our mood prediction method outperformed the existing methods. Additionally, we found that sleep and activity level were the most important features for predicting next-day PA and NA, respectively.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

Reference30 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3