Generalizable Layered Blockchain Architecture for Health Care Applications: Development, Case Studies, and Evaluation

Author:

Zhuang YanORCID,Chen Yin-WuORCID,Shae Zon-YinORCID,Shyu Chi-RenORCID

Abstract

Background Data coordination across multiple health care facilities has become increasingly important for many emerging health care applications. Distrust has been recognized as a key barrier to the success of such applications. Leveraging blockchain technology could provide potential solutions tobuild trust between data providers and receivers by taking advantage of blockchain properties such as security, immutability, anonymity, decentralization, and smart contracts. Many health technologies have empirically proven that blockchain designs fit well with the needs of health care applications with certain degrees of success. However, there is a lack of robust architecture to provide a practical framework for developers to implement applications and test the performance of stability, efficiency, and scalability using standard blockchain designs. A generalized blockchain model is needed for the health care community to adopt blockchain technology and develop applications in a timely fashion. Objective This study aimed at building a generalized blockchain architecture that provides data coordination functions, including data requests, permission granting, data exchange, and usage tracking, for a wide spectrum of health care application developments. Methods An augmented, 3-layered blockchain architecture was built on a private blockchain network. The 3 layers, from bottom to top, are as follows: (1) incorporation of fundamental blockchain settings and smart contract design for data collection; (2) interactions between the blockchain and health care application development environment using Node.js and web3.js; and (3) a flexible development platform that supports web technologies such as HTML, https, and various programing languages. Two example applications, health information exchange (HIE) and clinical trial recruitment, were developed in our design to demonstrate the feasibility of the layered architecture. Case studies were conducted to test the performance in terms of stability, efficiency, and scalability of the blockchain system. Results A total of 331,142 simulated HIE requests from accounts of 40,000 patients were successfully validated through this layered blockchain architecture with an average exchange time of 11.271 (SD 2.208) seconds. We also simulated a clinical trial recruitment scenario with the same set of patients and various recruitment criteria to match potential subjects using the same architecture. Potential subjects successfully received the clinical trial recruitment information and granted permission to the trial sponsors to access their health records with an average time of 3.07 seconds. Conclusions This study proposes a generalized layered blockchain architecture that offers health technology community blockchain features for application development without requiring developers to have extensive experience with blockchain technology. The case studies tested the performance of our design and empirically proved the feasibility of the architecture in 2 relevant health application domains.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3