A Novel Virtual Reality Assessment of Functional Cognition: Validation Study

Author:

Porffy Lilla AlexandraORCID,Mehta Mitul AORCID,Patchitt JoelORCID,Boussebaa CeliaORCID,Brett JackORCID,D’Oliveira TeresaORCID,Mouchlianitis EliasORCID,Shergill Sukhi SORCID

Abstract

Background Cognitive deficits are present in several neuropsychiatric disorders, including Alzheimer disease, schizophrenia, and depression. Assessments used to measure cognition in these disorders are time-consuming, burdensome, and have low ecological validity. To address these limitations, we developed a novel virtual reality shopping task—VStore. Objective This study aims to establish the construct validity of VStore in relation to the established computerized cognitive battery, Cogstate, and explore its sensitivity to age-related cognitive decline. Methods A total of 142 healthy volunteers aged 20-79 years participated in the study. The main VStore outcomes included verbal recall of 12 grocery items, time to collect items, time to select items on a self-checkout machine, time to make the payment, time to order coffee, and total completion time. Construct validity was examined through a series of backward elimination regression models to establish which Cogstate tasks, measuring attention, processing speed, verbal and visual learning, working memory, executive function, and paired associate learning, in addition to age and technological familiarity, best predicted VStore performance. In addition, 2 ridge regression and 2 logistic regression models supplemented with receiver operating characteristic curves were built, with VStore outcomes in the first model and Cogstate outcomes in the second model entered as predictors of age and age cohorts, respectively. Results Overall VStore performance, as indexed by the total time spent completing the task, was best explained by Cogstate tasks measuring attention, working memory, paired associate learning, and age and technological familiarity, accounting for 47% of the variance. In addition, with λ=5.16, the ridge regression model selected 5 parameters for VStore when predicting age (mean squared error 185.80, SE 19.34), and with λ=9.49 for Cogstate, the model selected all 8 tasks (mean squared error 226.80, SE 23.48). Finally, VStore was found to be highly sensitive (87%) and specific (91.7%) to age cohorts, with 94.6% of the area under the receiver operating characteristic curve. Conclusions Our findings suggest that VStore is a promising assessment that engages standard cognitive domains and is sensitive to age-related cognitive decline.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3