Sequential Data–Based Patient Similarity Framework for Patient Outcome Prediction: Algorithm Development

Author:

Wang NiORCID,Wang MuyuORCID,Zhou YangORCID,Liu HongleiORCID,Wei LanORCID,Fei XiaoluORCID,Chen HuiORCID

Abstract

Background Sequential information in electronic medical records is valuable and helpful for patient outcome prediction but is rarely used for patient similarity measurement because of its unevenness, irregularity, and heterogeneity. Objective We aimed to develop a patient similarity framework for patient outcome prediction that makes use of sequential and cross-sectional information in electronic medical record systems. Methods Sequence similarity was calculated from timestamped event sequences using edit distance, and trend similarity was calculated from time series using dynamic time warping and Haar decomposition. We also extracted cross-sectional information, namely, demographic, laboratory test, and radiological report data, for additional similarity calculations. We validated the effectiveness of the framework by constructing k–nearest neighbors classifiers to predict mortality and readmission for acute myocardial infarction patients, using data from (1) a public data set and (2) a private data set, at 3 time points—at admission, on Day 7, and at discharge—to provide early warning patient outcomes. We also constructed state-of-the-art Euclidean-distance k–nearest neighbor, logistic regression, random forest, long short-term memory network, and recurrent neural network models, which were used for comparison. Results With all available information during a hospitalization episode, predictive models using the similarity model outperformed baseline models based on both public and private data sets. For mortality predictions, all models except for the logistic regression model showed improved performances over time. There were no such increasing trends in predictive performances for readmission predictions. The random forest and logistic regression models performed best for mortality and readmission predictions, respectively, when using information from the first week after admission. Conclusions For patient outcome predictions, the patient similarity framework facilitated sequential similarity calculations for uneven electronic medical record data and helped improve predictive performance.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3