Artificial Intelligence–Enabled Software Prototype to Inform Opioid Pharmacovigilance From Electronic Health Records: Development and Usability Study

Author:

Sorbello AlfredORCID,Haque Syed ArefinulORCID,Hasan RashedulORCID,Jermyn RichardORCID,Hussein AhmadORCID,Vega AlexORCID,Zembrzuski KrzysztofORCID,Ripple AnnaORCID,Ahadpour MitraORCID

Abstract

Background The use of patient health and treatment information captured in structured and unstructured formats in computerized electronic health record (EHR) repositories could potentially augment the detection of safety signals for drug products regulated by the US Food and Drug Administration (FDA). Natural language processing and other artificial intelligence (AI) techniques provide novel methodologies that could be leveraged to extract clinically useful information from EHR resources. Objective Our aim is to develop a novel AI-enabled software prototype to identify adverse drug event (ADE) safety signals from free-text discharge summaries in EHRs to enhance opioid drug safety and research activities at the FDA. Methods We developed a prototype for web-based software that leverages keyword and trigger-phrase searching with rule-based algorithms and deep learning to extract candidate ADEs for specific opioid drugs from discharge summaries in the Medical Information Mart for Intensive Care III (MIMIC III) database. The prototype uses MedSpacy components to identify relevant sections of discharge summaries and a pretrained natural language processing (NLP) model, Spark NLP for Healthcare, for named entity recognition. Fifteen FDA staff members provided feedback on the prototype’s features and functionalities. Results Using the prototype, we were able to identify known, labeled, opioid-related adverse drug reactions from text in EHRs. The AI-enabled model achieved accuracy, recall, precision, and F1-scores of 0.66, 0.69, 0.64, and 0.67, respectively. FDA participants assessed the prototype as highly desirable in user satisfaction, visualizations, and in the potential to support drug safety signal detection for opioid drugs from EHR data while saving time and manual effort. Actionable design recommendations included (1) enlarging the tabs and visualizations; (2) enabling more flexibility and customizations to fit end users’ individual needs; (3) providing additional instructional resources; (4) adding multiple graph export functionality; and (5) adding project summaries. Conclusions The novel prototype uses innovative AI-based techniques to automate searching for, extracting, and analyzing clinically useful information captured in unstructured text in EHRs. It increases efficiency in harnessing real-world data for opioid drug safety and increases the usability of the data to support regulatory review while decreasing the manual research burden.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3