Abstract
Background
Online health communities (OHCs) have increasingly gained traction with patients, caregivers, and supporters globally. Chinese OHCs are no exception. However, user-generated content (UGC) and the associated user behaviors in Chinese OHCs are largely underexplored and rarely analyzed systematically, forfeiting valuable opportunities for optimizing treatment design and care delivery with insights gained from OHCs.
Objective
This study aimed to reveal both the shared and distinct characteristics of 2 popular OHCs in China by systematically and comprehensively analyzing their UGC and the associated user behaviors.
Methods
We concentrated on studying the lung cancer forum (LCF) and breast cancer forum (BCF) on Mijian, and the diabetes consultation forum (DCF) on Sweet Home, because of the importance of the 3 diseases among Chinese patients and their prevalence on Chinese OHCs in general. Our analysis explored the key user activities, small-world effect, and scale-free characteristics of each social network. We examined the UGC of these forums comprehensively and adopted the weighted knowledge network technique to discover salient topics and latent relations among these topics on each forum. Finally, we discussed the public health implications of our analysis findings.
Results
Our analysis showed that the number of reads per thread on each forum followed gamma distribution (HL=0, HB=0, and HD=0); the number of replies on each forum followed exponential distribution (adjusted RL2=0.946, adjusted RB2=0.958, and adjusted RD2=0.971); and the number of threads a user is involved with (adjusted RL2=0.978, adjusted RB2=0.964, and adjusted RD2=0.970), the number of followers of a user (adjusted RL2=0.989, adjusted RB2=0.962, and adjusted RD2=0.990), and a user’s degrees (adjusted RL2=0.997, adjusted RB2=0.994, and adjusted RD2=0.968) all followed power-law distribution. The study further revealed that users are generally more active during weekdays, as commonly witnessed in all 3 forums. In particular, the LCF and DCF exhibited high temporal similarity (ρ=0.927; P<.001) in terms of the relative thread posting frequencies during each hour of the day. Besides, the study showed that all 3 forums exhibited the small-world effect (mean σL=517.15, mean σB=275.23, and mean σD=525.18) and scale-free characteristics, while the global clustering coefficients were lower than those of counterpart international OHCs. The study also discovered several hot topics commonly shared among the 3 disease forums, such as disease treatment, disease examination, and diagnosis. In particular, the study found that after the outbreak of COVID-19, users on the LCF and BCF were much more likely to bring up COVID-19–related issues while discussing their medical issues.
Conclusions
UGC and related online user behaviors in Chinese OHCs can be leveraged as important sources of information to gain insights regarding individual and population health conditions. Effective and timely mining and utilization of such content can continuously provide valuable firsthand clues for enhancing the situational awareness of health providers and policymakers.
Reference56 articles.
1. Internet Plus: Premier Li’s new tech toolThe State Council of the People’s Republic of China2021-01-10http://english.www.gov.cn/premier/news/2015/03/13/content_281475070887811.htm
2. A multilevel analysis of sociability, usability, and community dynamics in an online health community
3. Open Medical and Healthcare Alliance2021-01-10https://www.omaha.org.cn
4. Action Plan for Further Improvement of Medical Services (2018-2020)National Health Commission of the People's Republic of China2021-01-10http://www.nhc.gov.cn/yzygj/s3594q/201801/9df87fced4da47b0a9f8e1ce9fbc7520.shtml
5. Patientslikeme2021-01-10https://www.patientslikeme.com/