Feasibility of Conducting Long-term Health and Behaviors Follow-up in Adolescents: Longitudinal Observational Study

Author:

Cucchiaro GiovanniORCID,Ahumada LuisORCID,Gray GeoffreyORCID,Fierstein JamieORCID,Yates HannahORCID,Householder KymORCID,Frye WilliamORCID,Rehman MohamedORCID

Abstract

Background Machine learning uses algorithms that improve automatically through experience. This statistical learning approach is a natural extension of traditional statistical methods and can offer potential advantages for certain problems. The feasibility of using machine learning techniques in health care is predicated on access to a sufficient volume of data in a problem space. Objective This study aimed to assess the feasibility of data collection from an adolescent population before and after a posterior spine fusion operation. Methods Both physical and psychosocial data were collected. Adolescents scheduled for a posterior spine fusion operation were approached when they were scheduled for the surgery. The study collected repeated measures of patient data, including at least 2 weeks prior to the operation and 6 months after the patients were discharged from the hospital. Patients were provided with a Fitbit Charge 4 (consumer-grade health tracker) and instructed to wear it as often as possible. A third-party web-based portal was used to collect and store the Fitbit data, and patients were trained on how to download and sync their personal device data on step counts, sleep time, and heart rate onto the web-based portal. Demographic and physiologic data recorded in the electronic medical record were retrieved from the hospital data warehouse. We evaluated changes in the patients’ psychological profile over time using several validated questionnaires (ie, Pain Catastrophizing Scale, Patient Health Questionnaire, Generalized Anxiety Disorder Scale, and Pediatric Quality of Life Inventory). Questionnaires were administered to patients using Qualtrics software. Patients received the questionnaire prior to and during the hospitalization and again at 3 and 6 months postsurgery. We administered paper-based questionnaires for the self-report of daily pain scores and the use of analgesic medications. Results There were several challenges to data collection from the study population. Only 38% (32/84) of the patients we approached met eligibility criteria, and 50% (16/32) of the enrolled patients dropped out during the follow-up period—on average 17.6 weeks into the study. Of those who completed the study, 69% (9/13) reliably wore the Fitbit and downloaded data into the web-based portal. These patients also had a high response rate to the psychosocial surveys. However, none of the patients who finished the study completed the paper-based pain diary. There were no difficulties accessing the demographic and clinical data stored in the hospital data warehouse. Conclusions This study identifies several challenges to long-term medical follow-up in adolescents, including willingness to participate in these types of studies and compliance with the various data collection approaches. Several of these challenges—insufficient incentives and personal contact between researchers and patients—should be addressed in future studies.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3