Abstract
Background
There is evidence that social interaction has an inverse association with the development of neurodegenerative diseases. PREDICT-Parkinson Disease (PREDICT-PD) is an online UK cohort study that stratifies participants for risk of future Parkinson disease (PD).
Objective
This study aims to explore the methodological approach and feasibility of assessing the digital social characteristics of people at risk of developing PD and their social capital within the PREDICT-PD platform, making hypotheses about the relationship between web-based social engagement and potential predictive risk indicators of PD.
Methods
A web-based application was built to enable social interaction through the PREDICT-PD portal. Feedback from existing members of the cohort was sought and informed the design of the pilot. Dedicated staff used weekly engagement activities, consisting of PD-related research, facts, and queries, to stimulate discussion. Data were collected by the hosting platform. We examined the pattern of connections generated over time through the cumulative number of posts and replies and ego networks using social network analysis. We used network metrics to describe the bonding, bridging, and linking of social capital among participants on the platform. Relevant demographic data and Parkinson risk scores (expressed as an odd 1:x) were analyzed using descriptive statistics. Regression analysis was conducted to estimate the relationship between risk scores (after log transformation) and network measures.
Results
Overall, 219 participants took part in a 4-month pilot forum embedded in the study website. In it, 200 people (n=80, 40% male and n=113, 57% female) connected in a large group, where most pairs of users could reach one another either directly or indirectly through other users. A total of 59% (20/34) of discussions were spontaneously started by participants. Participation was asynchronous, with some individuals acting as “brokers” between groups of discussions. As more participants joined the forum and connected to one another through online posts, distinct groups of connected users started to emerge. This pilot showed that a forum application within the cohort web platform was feasible and acceptable and fostered digital social interaction. Matching participants’ web-based social engagement with previously collected data at individual level in the PREDICT-PD study was feasible, showing potential for future analyses correlating online network characteristics with the risk of PD over time, as well as testing digital social engagement as an intervention to modify the risk of developing neurodegenerative diseases.
Conclusions
The results from the pilot suggest that an online forum can serve as an intervention to enhance social connectedness and investigate whether patterns of online engagement can impact the risk of developing PD through long-term follow-up. This highlights the potential of leveraging online platforms to study the role of social capital in moderating PD risk and underscores the feasibility of such approaches in future research or interventions.