Preferences for Attributes of Initial COVID-19 Diagnosis in the United States and China During the Pandemic: Discrete Choice Experiment With Propensity Score Matching

Author:

Zhang YiminORCID,Liu TaoranORCID,He ZonglinORCID,Chan Sze NgaiORCID,Akinwunmi BabatundeORCID,Huang JianORCID,Wong Tak-HapORCID,Zhang Casper J PORCID,Ming Wai-KitORCID

Abstract

Background China and the United States play critical leading roles in the global effort to contain the COVID-19 virus. Therefore, their population’s preferences for initial diagnosis were compared to provide policy and clinical insights. Objective We aim to quantify and compare the public’s preferences for medical management of fever and the attributes of initial diagnosis in the case of presenting symptoms during the COVID-19 pandemic in China and the United States. Methods We conducted a cross-sectional study from January to March 2021 in China and the United States using an online discrete choice experiment (DCE) questionnaire distributed through Amazon Mechanical Turk (MTurk; in the United States) and recruited volunteers (in China). Propensity score matching (PSM) was used to match the 2 groups of respondents from China and the United States to minimize confounding effects. In addition, the respondents’ preferences for different diagnosis options were evaluated using a mixed logit model (MXL) and latent class models (LCMs). Moreover, demographic data were collected and compared using the chi-square test, Fisher test, and Mann-Whitney U test. Results A total of 9112 respondents (5411, 59.4%, from China and 3701, 40.6%, from the United States) who completed our survey were included in our analysis. After PSM, 1240 (22.9%) respondents from China and 1240 (33.5%) from the United States were matched for sex, age, educational level, occupation, and annual salary levels. The segmented sizes of 3 classes of respondents from China were 870 (70.2%), 270 (21.8%), and 100 (8.0%), respectively. Meanwhile, the US respondents’ segmented sizes were 269 (21.7%), 139 (11.2%), and 832 (67.1%), respectively. Respondents from China attached the greatest importance to the type of medical institution (weighted importance=40.0%), while those from the United States valued the waiting time (weighted importance=31.5%) the most. Respondents from China preferred the emergency department (coefficient=0.973, reference level: online consultation) and fever clinic (a special clinic for the treatment of fever patients for the prevention and control of acute infectious diseases in China; coefficient=0.974, reference level: online consultation), while those from the United States preferred private clinics (general practices; coefficient=0.543, reference level: online consultation). Additionally, shorter waiting times, COVID-19 nucleic acid testing arrangements, higher reimbursement rates, and lower costs were always preferred. Conclusions Improvements in the availability of COVID-19 testing and medical professional skills and increased designated health care facilities may help boost potential health care seeking during COVID-19 and prevent unrecognized community spreading of SARS-CoV-2 in China and the United States. Moreover, to better prevent future waves of pandemics, identify undiagnosed patients, and encourage those undiagnosed to seek health care services to curb the pandemic, the hierarchical diagnosis and treatment system needs improvement in China, and the United States should focus on reducing diagnosis costs and raising the reimbursement rate of medical insurance.

Publisher

JMIR Publications Inc.

Subject

Public Health, Environmental and Occupational Health,Health Informatics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3