Comparing the Output of an Artificial Intelligence Algorithm in Detecting Radiological Signs of Pulmonary Tuberculosis in Digital Chest X-Rays and Their Smartphone-Captured Photos of X-Ray Films: Retrospective Study

Author:

Ridhi SmritiORCID,Robert DennisORCID,Soren PitamberORCID,Kumar ManishORCID,Pawar SaniyaORCID,Reddy BhargavaORCID

Abstract

Background Artificial intelligence (AI) based computer-aided detection devices are recommended for screening and triaging of pulmonary tuberculosis (TB) using digital chest x-ray (CXR) images (soft copies). Most AI algorithms are trained using input data from digital CXR Digital Imaging and Communications in Medicine (DICOM) files. There can be scenarios when only digital CXR films (hard copies) are available for interpretation. A smartphone-captured photo of the digital CXR film may be used for AI to process in such a scenario. There is a gap in the literature investigating if there is a significant difference in the performance of AI algorithms when digital CXR DICOM files are used as input for AI to process as opposed to photos of the digital CXR films being used as input. Objective The primary objective was to compare the agreement of AI in detecting radiological signs of TB when using DICOM files (denoted as CXRd) as input versus when using smartphone-captured photos of digital CXR films (denoted as CXRp) with human readers. Methods Pairs of CXRd and CXRp images were obtained retrospectively from patients screened for TB. AI results were obtained using both the CXRd and CXRp files. The majority consensus on the presence or absence of TB in CXR pairs was obtained from a panel of 3 independent radiologists. The positive and negative percent agreement of AI in detecting radiological signs of TB in CXRd and CXRp were estimated by comparing with the majority consensus. The distribution of AI probability scores was also compared. Results A total of 1278 CXR pairs were analyzed. The positive percent agreement of AI was found to be 92.22% (95% CI 89.94-94.12) and 90.75% (95% CI 88.32-92.82), respectively, for CXRd and CXRp images (P=.09). The negative percent agreement of AI was 82.08% (95% CI 78.76-85.07) and 79.23% (95% CI 75.75-82.42), respectively, for CXRd and CXRp images (P=.06). The median of the AI probability score was 0.72 (IQR 0.11-0.97) in CXRd and 0.72 (IQR 0.14-0.96) in CXRp images (P=.75). Conclusions We did not observe any statistically significant differences in the output of AI in digital CXRs and photos of digital CXR films.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3