Artificial Intelligence for Skin Cancer Detection: Scoping Review

Author:

Takiddin AbdulrahmanORCID,Schneider JensORCID,Yang YinORCID,Abd-Alrazaq AlaaORCID,Househ MowafaORCID

Abstract

Background Skin cancer is the most common cancer type affecting humans. Traditional skin cancer diagnosis methods are costly, require a professional physician, and take time. Hence, to aid in diagnosing skin cancer, artificial intelligence (AI) tools are being used, including shallow and deep machine learning–based methodologies that are trained to detect and classify skin cancer using computer algorithms and deep neural networks. Objective The aim of this study was to identify and group the different types of AI-based technologies used to detect and classify skin cancer. The study also examined the reliability of the selected papers by studying the correlation between the data set size and the number of diagnostic classes with the performance metrics used to evaluate the models. Methods We conducted a systematic search for papers using Institute of Electrical and Electronics Engineers (IEEE) Xplore, Association for Computing Machinery Digital Library (ACM DL), and Ovid MEDLINE databases following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. The studies included in this scoping review had to fulfill several selection criteria: being specifically about skin cancer, detecting or classifying skin cancer, and using AI technologies. Study selection and data extraction were independently conducted by two reviewers. Extracted data were narratively synthesized, where studies were grouped based on the diagnostic AI techniques and their evaluation metrics. Results We retrieved 906 papers from the 3 databases, of which 53 were eligible for this review. Shallow AI-based techniques were used in 14 studies, and deep AI-based techniques were used in 39 studies. The studies used up to 11 evaluation metrics to assess the proposed models, where 39 studies used accuracy as the primary evaluation metric. Overall, studies that used smaller data sets reported higher accuracy. Conclusions This paper examined multiple AI-based skin cancer detection models. However, a direct comparison between methods was hindered by the varied use of different evaluation metrics and image types. Performance scores were affected by factors such as data set size, number of diagnostic classes, and techniques. Hence, the reliability of shallow and deep models with higher accuracy scores was questionable since they were trained and tested on relatively small data sets of a few diagnostic classes.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3