Using Artificial Neural Network Condensation to Facilitate Adaptation of Machine Learning in Medical Settings by Reducing Computational Burden: Model Design and Evaluation Study

Author:

Liu DianboORCID,Zheng MingORCID,Sepulveda Nestor AndresORCID

Abstract

Background Machine learning applications in the health care domain can have a great impact on people’s lives. At the same time, medical data is usually big, requiring a significant number of computational resources. Although this might not be a problem for the wide adoption of machine learning tools in high-income countries, the availability of computational resources can be limited in low-income countries and on mobile devices. This can limit many people from benefiting from the advancement in machine learning applications in the field of health care. Objective In this study, we explore three methods to increase the computational efficiency and reduce model sizes of either recurrent neural networks (RNNs) or feedforward deep neural networks (DNNs) without compromising their accuracy. Methods We used inpatient mortality prediction as our case analysis upon review of an intensive care unit dataset. We reduced the size of RNN and DNN by applying pruning of “unused” neurons. Additionally, we modified the RNN structure by adding a hidden layer to the RNN cell but reducing the total number of recurrent layers to accomplish a reduction of the total parameters used in the network. Finally, we implemented quantization on DNN by forcing the weights to be 8 bits instead of 32 bits. Results We found that all methods increased implementation efficiency, including training speed, memory size, and inference speed, without reducing the accuracy of mortality prediction. Conclusions Our findings suggest that neural network condensation allows for the implementation of sophisticated neural network algorithms on devices with lower computational resources.

Publisher

JMIR Publications Inc.

Subject

Computer Science Applications,Health Informatics,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3