Identification of Semantically Similar Sentences in Clinical Notes: Iterative Intermediate Training Using Multi-Task Learning

Author:

Mahajan DiwakarORCID,Poddar AnanyaORCID,Liang Jennifer JORCID,Lin Yen-TingORCID,Prager John MORCID,Suryanarayanan ParthasarathyORCID,Raghavan PreethiORCID,Tsou Ching-HueiORCID

Abstract

Background Although electronic health records (EHRs) have been widely adopted in health care, effective use of EHR data is often limited because of redundant information in clinical notes introduced by the use of templates and copy-paste during note generation. Thus, it is imperative to develop solutions that can condense information while retaining its value. A step in this direction is measuring the semantic similarity between clinical text snippets. To address this problem, we participated in the 2019 National NLP Clinical Challenges (n2c2)/Open Health Natural Language Processing Consortium (OHNLP) clinical semantic textual similarity (ClinicalSTS) shared task. Objective This study aims to improve the performance and robustness of semantic textual similarity in the clinical domain by leveraging manually labeled data from related tasks and contextualized embeddings from pretrained transformer-based language models. Methods The ClinicalSTS data set consists of 1642 pairs of deidentified clinical text snippets annotated in a continuous scale of 0-5, indicating degrees of semantic similarity. We developed an iterative intermediate training approach using multi-task learning (IIT-MTL), a multi-task training approach that employs iterative data set selection. We applied this process to bidirectional encoder representations from transformers on clinical text mining (ClinicalBERT), a pretrained domain-specific transformer-based language model, and fine-tuned the resulting model on the target ClinicalSTS task. We incrementally ensembled the output from applying IIT-MTL on ClinicalBERT with the output of other language models (bidirectional encoder representations from transformers for biomedical text mining [BioBERT], multi-task deep neural networks [MT-DNN], and robustly optimized BERT approach [RoBERTa]) and handcrafted features using regression-based learning algorithms. On the basis of these experiments, we adopted the top-performing configurations as our official submissions. Results Our system ranked first out of 87 submitted systems in the 2019 n2c2/OHNLP ClinicalSTS challenge, achieving state-of-the-art results with a Pearson correlation coefficient of 0.9010. This winning system was an ensembled model leveraging the output of IIT-MTL on ClinicalBERT with BioBERT, MT-DNN, and handcrafted medication features. Conclusions This study demonstrates that IIT-MTL is an effective way to leverage annotated data from related tasks to improve performance on a target task with a limited data set. This contribution opens new avenues of exploration for optimized data set selection to generate more robust and universal contextual representations of text in the clinical domain.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3