Identifying Women at Risk for Polycystic Ovary Syndrome Using a Mobile Health App: Virtual Tool Functionality Assessment

Author:

Rodriguez Erika MarieORCID,Thomas DanielORCID,Druet AnnaORCID,Vlajic-Wheeler MarijaORCID,Lane Kevin JamesORCID,Mahalingaiah ShruthiORCID

Abstract

Background Polycystic ovary syndrome (PCOS) is an endocrine disrupting disorder affecting about 10% of reproductive-aged women. PCOS diagnosis may be delayed several years and may require multiple physicians, resulting in lost time for risk-reducing interventions. Menstrual tracking apps are a potential tool to alert women of their risk while also prompting evaluation from a medical professional. Objective The primary objective of this study was to develop and pilot test the irregular cycle feature, a predictive model that generated a PCOS risk score, in the menstrual tracking app, Clue. The secondary objectives were to run the model using virtual test subjects, create a quantitative risk score, compare the feature’s risk score with that of a physician, and determine the sensitivity and specificity of the model before empirical testing on human subjects. Methods A literature review was conducted to generate a list of signs and symptoms of PCOS, termed variables. Variables were then assigned a probability and built into a Bayesian network. Questions were created based on these variables. A total of 9 virtual test subjects were identified using self-reported menstrual cycles and answers to the feature’s questions. Upon completion of the questionnaire, a Result Screen and Doctor’s Report summarizing the probability of having PCOS was displayed. This provided information about PCOS and data to facilitate diagnosis by a medical professional. To assess the accuracy of the feature, the same set of 9 virtual test subjects was assigned probabilities by the feature and the physician, who served as the gold standard. The feature recommended individuals with a score greater than or equal to 25% to follow-up with a physician. Differences between the feature and physician scores were evaluated using a t test and a Pearson correlation coefficient in 8 of the 9 virtual test subjects. A second iteration was conducted to assess the feature’s probability capabilities. Results The irregular cycle feature’s first iteration produced 1 false-positive compared with the physician score and had an absolute mean difference of 15.5% (SD 15.1%) among the virtual test subjects. The second iteration had 2 false positives compared with the physician score and had an absolute mean difference of 18.8% (SD 13.6%). The feature overpredicted the virtual test subjects’ risk of PCOS compared with the physician. However, a significant positive correlation existed between the feature and physician score (Pearson correlation coefficient=0.82; P=.01). The second iteration performed worse, with a Pearson correlation coefficient of 0.73 (P=.03). Conclusions The first iteration of the feature outperformed the second and better predicted the probability of PCOS. Although further research is needed with a more robust sample size, this pilot study indicates the potential value for developing a screening tool to prompt high-risk subjects to seek evaluation by a medical professional.

Publisher

JMIR Publications Inc.

Subject

Computer Science Applications,Health Informatics,Medicine (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3