Developing Mood-Based Computer-Tailored Health Communication for Smoking Cessation: Feasibility Randomized Controlled Trial

Author:

Lee Donghee NORCID,Sadasivam Rajani SORCID,Stevens Elise MORCID

Abstract

Background Computer-tailored health communication (CTHC), a widely used strategy to increase the effectiveness of smoking cessation interventions, is focused on selecting the best messages for an individual. More recently, CTHC interventions have been tested using contextual information such as participants’ current stress or location to adapt message selection. However, mood has not yet been used in CTCH interventions and may increase their effectiveness. Objective This study aims to examine the association of mood and smoking cessation message effectiveness among adults who currently smoke cigarettes. Methods In January 2022, we recruited a web-based convenience sample of adults who smoke cigarettes (N=615; mean age 41.13 y). Participants were randomized to 1 of 3 mood conditions (positive, negative, or neutral) and viewed pictures selected from the International Affective Picture System to induce an emotional state within the assigned condition. Participants then viewed smoking cessation messages with topics covering five themes: (1) financial costs or rewards, (2) health, (3) quality of life, (4) challenges of quitting, and (5) motivation or reasons to quit. Following each message, participants completed questions on 3 constructs: message receptivity, perceived relevance, and their motivation to quit. The process was repeated 30 times. We used 1-way ANOVA to estimate the association of the mood condition on these constructs, controlling for demographics, cigarettes per day, and motivation to quit measured during the pretest. We also estimated the association between mood and outcomes for each of the 5 smoking message theme categories. Results There was an overall statistically significant effect of the mood condition on the motivation to quit outcome (P=.02) but not on the message receptivity (P=.16) and perceived relevance (P=.86) outcomes. Participants in the positive mood condition reported significantly greater motivation to quit compared with those in the negative mood condition (P=.005). Participants in the positive mood condition reported higher motivation to quit after viewing smoking cessation messages in the financial (P=.03), health (P=.01), quality of life (P=.04), and challenges of quitting (P=.03) theme categories. We also compared each mood condition and found that participants in the positive mood condition reported significantly greater motivation to quit after seeing messages in the financial (P=.01), health (P=.003), quality of life (P=.01), and challenges of quitting (P=.01) theme categories than those in the negative mood condition. Conclusions Our findings suggest that considering mood may be important for future CTHC interventions. Because those in the positive mood state at the time of message exposure were more likely to have greater quitting motivations, smoking cessation CTHC interventions may consider strategies to help improve participants’ mood when delivering these messages. For those in neutral and negative mood states, focusing on certain message themes (health and motivation to quit) may be more effective than other message themes.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

Reference44 articles.

1. Data and statisticsCenters for Disease Control and Prevention20232023-05-12https://www.cdc.gov/tobacco/data_statistics/index.htm

2. Annual Healthcare Spending Attributable to Cigarette Smoking

3. Tailoring: what's in a name?

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3