Predicting Depression in Patients With Knee Osteoarthritis Using Machine Learning: Model Development and Validation Study

Author:

Nowinka ZuzannaORCID,Alagha M AbdulhadiORCID,Mahmoud KhadijaORCID,Jones Gareth GORCID

Abstract

Background Knee osteoarthritis (OA) is the most common form of OA and a leading cause of disability worldwide. Chronic pain and functional loss secondary to knee OA put patients at risk of developing depression, which can also impair their treatment response. However, no tools exist to assist clinicians in identifying patients at risk. Machine learning (ML) predictive models may offer a solution. We investigated whether ML models could predict the development of depression in patients with knee OA and examined which features are the most predictive. Objective The primary aim of this study was to develop and test an ML model to predict depression in patients with knee OA at 2 years and to validate the models using an external data set. The secondary aim was to identify the most important predictive features used by the ML algorithms. Methods Osteoarthritis Initiative Study (OAI) data were used for model development and external validation was performed using Multicenter Osteoarthritis Study (MOST) data. Forty-two features were selected, which denoted routinely collected demographic and clinical data such as patient demographics, past medical history, knee OA history, baseline examination findings, and patient-reported outcome measures. Six different ML classification models were trained (logistic regression, least absolute shrinkage and selection operator [LASSO], ridge regression, decision tree, random forest, and gradient boosting machine). The primary outcome was to predict depression at 2 years following study enrollment. The presence of depression was defined using the Center for Epidemiological Studies Depression Scale. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC) and F1 score. The most important features were extracted from the best-performing model on external validation. Results A total of 5947 patients were included in this study, with 2969 in the training set, 742 in the test set, and 2236 in the external validation set. For the test set, the AUC ranged from 0.673 (95% CI 0.604-0.742) to 0.869 (95% CI 0.824-0.913), with an F1 score of 0.435 to 0.490. On external validation, the AUC varied from 0.720 (95% CI 0.685-0.755) to 0.876 (95% CI 0.853-0.899), with an F1 score of 0.456 to 0.563. LASSO modeling offered the highest predictive performance. Blood pressure, baseline depression score, knee pain and stiffness, and quality of life were the most predictive features. Conclusions To our knowledge, this is the first study to apply ML classification models to predict depression in patients with knee OA. Our study showed that ML models can deliver a clinically acceptable level of performance (AUC>0.7) in predicting the development of depression using routinely available demographic and clinical data. Further work is required to address the class imbalance in the training data and to evaluate the clinical utility of the models in facilitating early intervention and improved outcomes.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3