Predicting Publication of Clinical Trials Using Structured and Unstructured Data: Model Development and Validation Study

Author:

Wang SiyangORCID,Šuster SimonORCID,Baldwin TimothyORCID,Verspoor KarinORCID

Abstract

Background Publication of registered clinical trials is a critical step in the timely dissemination of trial findings. However, a significant proportion of completed clinical trials are never published, motivating the need to analyze the factors behind success or failure to publish. This could inform study design, help regulatory decision-making, and improve resource allocation. It could also enhance our understanding of bias in the publication of trials and publication trends based on the research direction or strength of the findings. Although the publication of clinical trials has been addressed in several descriptive studies at an aggregate level, there is a lack of research on the predictive analysis of a trial’s publishability given an individual (planned) clinical trial description. Objective We aimed to conduct a study that combined structured and unstructured features relevant to publication status in a single predictive approach. Established natural language processing techniques as well as recent pretrained language models enabled us to incorporate information from the textual descriptions of clinical trials into a machine learning approach. We were particularly interested in whether and which textual features could improve the classification accuracy for publication outcomes. Methods In this study, we used metadata from ClinicalTrials.gov (a registry of clinical trials) and MEDLINE (a database of academic journal articles) to build a data set of clinical trials (N=76,950) that contained the description of a registered trial and its publication outcome (27,702/76,950, 36% published and 49,248/76,950, 64% unpublished). This is the largest data set of its kind, which we released as part of this work. The publication outcome in the data set was identified from MEDLINE based on clinical trial identifiers. We carried out a descriptive analysis and predicted the publication outcome using 2 approaches: a neural network with a large domain-specific language model and a random forest classifier using a weighted bag-of-words representation of text. Results First, our analysis of the newly created data set corroborates several findings from the existing literature regarding attributes associated with a higher publication rate. Second, a crucial observation from our predictive modeling was that the addition of textual features (eg, eligibility criteria) offers consistent improvements over using only structured data (F1-score=0.62-0.64 vs F1-score=0.61 without textual features). Both pretrained language models and more basic word-based representations provide high-utility text representations, with no significant empirical difference between the two. Conclusions Different factors affect the publication of a registered clinical trial. Our approach to predictive modeling combines heterogeneous features, both structured and unstructured. We show that methods from natural language processing can provide effective textual features to enable more accurate prediction of publication success, which has not been explored for this task previously.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3