Feasibility of Using a Single Heart Rate–Based Measure for Real-time Feedback in a Voluntary Deep Breathing App for Children: Data Collection and Algorithm Development

Author:

Petersen Christian LORCID,Görges MatthiasORCID,Todorova EvgeniaORCID,West Nicholas CORCID,Newlove TheresaORCID,Ansermino J MarkORCID

Abstract

Background Deep diaphragmatic breathing, also called belly breathing, is a popular behavioral intervention that helps children cope with anxiety, stress, and their experience of pain. Combining physiological monitoring with accessible mobile technology can motivate children to comply with this intervention through biofeedback and gaming. These innovative technologies have the potential to improve patient experience and compliance with strategies that reduce anxiety, change the experience of pain, and enhance self-regulation during distressing medical procedures. Objective The aim of this paper was to describe a simple biofeedback method for quantifying breathing compliance in a mobile smartphone app. Methods A smartphone app was developed that combined pulse oximetry with an animated protocol for paced deep breathing. We collected photoplethysmogram data during spontaneous and subsequently paced deep breathing in children. Two measures, synchronized respiratory sinus arrhythmia (RSAsync) and the corresponding relative synchronized inspiration/expiration heart rate ratio (HR-I:Esync), were extracted from the photoplethysmogram. Results Data collected from 80 children aged 5-17 years showed a positive RSAsync effect in all participants during paced deep breathing, with a median (IQR; range) HR-I:Esync ratio of 1.26 (1.16-1.35; 1.01-1.60) during paced deep breathing compared to 0.98 (0.96-1.02; 0.82-1.18) during spontaneous breathing (median difference 0.25, 95% CI 0.23-0.30; P<.001). The measured HR-I:Esync values appeared to be independent of age. Conclusions An HR-I:Esync level of 1.1 was identified as an age-independent threshold for programming the breathing pattern for optimal compliance in biofeedback.

Publisher

JMIR Publications Inc.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3