Predicting Lung Cancer Survival to the Future: Population-Based Cancer Survival Modeling Study

Author:

Meng Fan-TsuiORCID,Jhuang Jing-RongORCID,Peng Yan-TengORCID,Chiang Chun-JuORCID,Yang Ya-WenORCID,Huang Chi-YenORCID,Huang Kuo-PingORCID,Lee Wen-ChungORCID

Abstract

Background Lung cancer remains the leading cause of cancer-related mortality globally, with late diagnoses often resulting in poor prognosis. In response, the Lung Ambition Alliance aims to double the 5-year survival rate by 2025. Objective Using the Taiwan Cancer Registry, this study uses the survivorship-period-cohort model to assess the feasibility of achieving this goal by predicting future survival rates of patients with lung cancer in Taiwan. Methods This retrospective study analyzed data from 205,104 patients with lung cancer registered between 1997 and 2018. Survival rates were calculated using the survivorship-period-cohort model, focusing on 1-year interval survival rates and extrapolating to predict 5-year outcomes for diagnoses up to 2020, as viewed from 2025. Model validation involved comparing predicted rates with actual data using symmetric mean absolute percentage error. Results The study identified notable improvements in survival rates beginning in 2004, with the predicted 5-year survival rate for 2020 reaching 38.7%, marking a considerable increase from the most recent available data of 23.8% for patients diagnosed in 2013. Subgroup analysis revealed varied survival improvements across different demographics and histological types. Predictions based on current trends indicate that achieving the Lung Ambition Alliance’s goal could be within reach. Conclusions The analysis demonstrates notable improvements in lung cancer survival rates in Taiwan, driven by the adoption of low-dose computed tomography screening, alongside advances in diagnostic technologies and treatment strategies. While the ambitious target set by the Lung Ambition Alliance appears achievable, ongoing advancements in medical technology and health policies will be crucial. The study underscores the potential impact of continued enhancements in lung cancer management and the importance of strategic health interventions to further improve survival outcomes.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3