Improving Outcomes Through Personalized Recommendations in a Remote Diabetes Monitoring Program: Observational Study

Author:

Kamath SowmyaORCID,Kappaganthu KarthikORCID,Painter StefanieORCID,Madan AnmolORCID

Abstract

Background Diabetes management is complex, and program personalization has been identified to enhance engagement and clinical outcomes in diabetes management programs. However, 50% of individuals living with diabetes are unable to achieve glycemic control, presenting a gap in the delivery of self-management education and behavior change. Machine learning and recommender systems, which have been used within the health care setting, could be a feasible application for diabetes management programs to provide a personalized user experience and improve user engagement and outcomes. Objective This study aims to evaluate machine learning models using member-level engagements to predict improvement in estimated A1c and develop personalized action recommendations within a remote diabetes monitoring program to improve clinical outcomes. Methods A retrospective study of Livongo for Diabetes member engagement data was analyzed within five action categories (interacting with a coach, reading education content, self-monitoring blood glucose level, tracking physical activity, and monitoring nutrition) to build a member-level model to predict if a specific type and level of engagement could lead to improved estimated A1c for members with type 2 diabetes. Engagement and improvement in estimated A1c can be correlated; therefore, the doubly robust learning method was used to model the heterogeneous treatment effect of action engagement on improvements in estimated A1c. Results The treatment effect was successfully computed within the five action categories on estimated A1c reduction for each member. Results show interaction with coaches and self-monitoring blood glucose levels were the actions that resulted in the highest average decrease in estimated A1c (1.7% and 1.4%, respectively) and were the most recommended actions for 54% of the population. However, these were found to not be the optimal interventions for all members; 46% of members were predicted to have better outcomes with one of the other three interventions. Members who engaged with their recommended actions had on average a 0.8% larger reduction in estimated A1c than those who did not engage in recommended actions within the first 3 months of the program. Conclusions Personalized action recommendations using heterogeneous treatment effects to compute the impact of member actions can reduce estimated A1c and be a valuable tool for diabetes management programs in encouraging members toward actions to improve clinical outcomes.

Publisher

JMIR Publications Inc.

Subject

Computer Science Applications,Health Informatics,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3