Objectively Quantifying Pediatric Psychiatric Severity Using Artificial Intelligence, Voice Recognition Technology, and Universal Emotions: Pilot Study for Artificial Intelligence-Enabled Innovation to Address Youth Mental Health Crisis

Author:

Caulley DesmondORCID,Alemu YaredORCID,Burson SedaraORCID,Cárdenas Bautista ElizabethORCID,Abebe Tadesse GirmawORCID,Kottmyer ChristopherORCID,Aeschbach LaurentORCID,Cheungvivatpant BryanORCID,Sezgin EmreORCID

Abstract

Background Providing Psychotherapy, particularly for youth, is a pressing challenge in the health care system. Traditional methods are resource-intensive, and there is a need for objective benchmarks to guide therapeutic interventions. Automated emotion detection from speech, using artificial intelligence, presents an emerging approach to address these challenges. Speech can carry vital information about emotional states, which can be used to improve mental health care services, especially when the person is suffering. Objective This study aims to develop and evaluate automated methods for detecting the intensity of emotions (anger, fear, sadness, and happiness) in audio recordings of patients’ speech. We also demonstrate the viability of deploying the models. Our model was validated in a previous publication by Alemu et al with limited voice samples. This follow-up study used significantly more voice samples to validate the previous model. Methods We used audio recordings of patients, specifically children with high adverse childhood experience (ACE) scores; the average ACE score was 5 or higher, at the highest risk for chronic disease and social or emotional problems; only 1 in 6 have a score of 4 or above. The patients’ structured voice sample was collected by reading a fixed script. In total, 4 highly trained therapists classified audio segments based on a scoring process of 4 emotions and their intensity levels for each of the 4 different emotions. We experimented with various preprocessing methods, including denoising, voice-activity detection, and diarization. Additionally, we explored various model architectures, including convolutional neural networks (CNNs) and transformers. We trained emotion-specific transformer-based models and a generalized CNN-based model to predict emotion intensities. Results The emotion-specific transformer-based model achieved a test-set precision and recall of 86% and 79%, respectively, for binary emotional intensity classification (high or low). In contrast, the CNN-based model, generalized to predict the intensity of 4 different emotions, achieved test-set precision and recall of 83% for each. Conclusions Automated emotion detection from patients’ speech using artificial intelligence models is found to be feasible, leading to a high level of accuracy. The transformer-based model exhibited better performance in emotion-specific detection, while the CNN-based model showed promise in generalized emotion detection. These models can serve as valuable decision-support tools for pediatricians and mental health providers to triage youth to appropriate levels of mental health care services. International Registered Report Identifier (IRRID) RR1-10.2196/51912

Publisher

JMIR Publications Inc.

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using augmented intelligence to improve long term outcomes;Current Opinion in Critical Care;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3