Determining the Optimal Virtual Reality Exergame Approach for Balance Therapy in Persons With Neurological Disorders Using a Rasch Analysis: Longitudinal Observational Study

Author:

Wiskerke EvelyneORCID,Kool JanORCID,Hilfiker RogerORCID,Sattelmayer Karl MartinORCID,Verheyden GeertORCID

Abstract

Background Virtual reality (VR) exergames have gained popularity in the rehabilitation of persons with neurological disorders as an add-on therapy to increase intensity of training. Intensity is strongly dependent on the motivation of the patient. Motivation can be increased by delivering variation within training and challenging exercises. However, patients are often underchallenged, as exergame difficulty often does not match the patient’s ability. A Rasch analysis can establish hierarchy of exergame items in order to assist the delivery of patient-centered therapy. Objective The aim of this study was to apply the Rasch model to create a hierarchical order of existing VR balance exergames and to relate these exergames to the abilities of persons with neurological disorders, in order to deliver challenge and variation. Methods A total of 30 persons with stroke and 51 persons with multiple sclerosis (MS) were included in the study. All participants performed a training program, lasting 3 weeks for persons with MS and 4 weeks for persons with stroke, in which they performed VR balance exergames with a movement recognition–based system (MindMotion GO; MindMaze SA). VR exercise scores, Berg Balance Scale scores, and clinical descriptive data were collected. Berg Balance Scale and device scores were analyzed with the Rasch model using a repeated-measures approach to examine whether the distribution of exercise scores fitted the Rasch model. Secondly, a person-item map was created to show the hierarchy of exercise difficulty and person ability. Results Participants completed a selection of 56 balance exercises (ie, items), which consisted of a combination of various balance tasks and levels (ie, exercises). Using repeated measures, this resulted in a count of 785 observations. Analysis showed strong evidence for unidimensionality of the data. A total of 47 exercises (ie, items) had a sufficiently good fit to the Rasch model. Six items showed underfit, with outfit mean square values above 1.5. One item showed underfit but was kept in the analysis. Three items had negative point-biserial correlations. The final model consisted of 47 exercises, which were provided for persons with low to moderate balance ability. Conclusions The VR exercises sufficiently fitted the Rasch model and resulted in a hierarchical order of VR balance exercises for persons with stroke and MS with low to moderate balance ability. In combination with the Berg Balance Scale, the results can guide clinical decision-making in the selection of patient-focused VR balance exercises. Trial Registration ClinicalTrials.gov NCT03993275; https://clinicaltrials.gov/ct2/show/NCT03993275

Publisher

JMIR Publications Inc.

Subject

Psychiatry and Mental health,Computer Science Applications,Rehabilitation,Biomedical Engineering,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital therapeutics in the clinic;Bioengineering & Translational Medicine;2023-05-03

2. Gesteigerte Therapiemotivation durch innovative Virtual-Reality-Therapie;Nervenheilkunde;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3