Technology-Based Compensation Assessment and Detection of Upper Extremity Activities of Stroke Survivors: Systematic Review

Author:

Wang XiaoyiORCID,Fu YanORCID,Ye BingORCID,Babineau JessicaORCID,Ding YongORCID,Mihailidis AlexORCID

Abstract

Background Upper extremity (UE) impairment affects up to 80% of stroke survivors and accounts for most of the rehabilitation after discharge from the hospital release. Compensation, commonly used by stroke survivors during UE rehabilitation, is applied to adapt to the loss of motor function and may impede the rehabilitation process in the long term and lead to new orthopedic problems. Intensive monitoring of compensatory movements is critical for improving the functional outcomes during rehabilitation. Objective This review analyzes how technology-based methods have been applied to assess and detect compensation during stroke UE rehabilitation. Methods We conducted a wide database search. All studies were independently screened by 2 reviewers (XW and YF), with a third reviewer (BY) involved in resolving discrepancies. The final included studies were rated according to their level of clinical evidence based on their correlation with clinical scales (with the same tasks or the same evaluation criteria). One reviewer (XW) extracted data on publication, demographic information, compensation types, sensors used for compensation assessment, compensation measurements, and statistical or artificial intelligence methods. Accuracy was checked by another reviewer (YF). Four research questions were presented. For each question, the data were synthesized and tabulated, and a descriptive summary of the findings was provided. The data were synthesized and tabulated based on each research question. Results A total of 72 studies were included in this review. In all, 2 types of compensation were identified: disuse of the affected upper limb and awkward use of the affected upper limb to adjust for limited strength, mobility, and motor control. Various models and quantitative measurements have been proposed to characterize compensation. Body-worn technology (25/72, 35% studies) was the most used sensor technology to assess compensation, followed by marker-based motion capture system (24/72, 33% studies) and marker-free vision sensor technology (16/72, 22% studies). Most studies (56/72, 78% studies) used statistical methods for compensation assessment, whereas heterogeneous machine learning algorithms (15/72, 21% studies) were also applied for automatic detection of compensatory movements and postures. Conclusions This systematic review provides insights for future research on technology-based compensation assessment and detection in stroke UE rehabilitation. Technology-based compensation assessment and detection have the capacity to augment rehabilitation independent of the constant care of therapists. The drawbacks of each sensor in compensation assessment and detection are discussed, and future research could focus on methods to overcome these disadvantages. It is advised that open data together with multilabel classification algorithms or deep learning algorithms could benefit from automatic real time compensation detection. It is also recommended that technology-based compensation predictions be explored.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3