Abstract
Background
Globally, the preterm birth rate has tended to increase over time. Ultrasonography cervical-length assessment is considered to be the most effective screening method for preterm birth, but routine, universal cervical-length screening remains controversial because of its cost.
Objective
We used obstetric data to analyze and assess the risk of preterm birth. A machine learning model based on time-series technology was used to analyze regular, repeated obstetric examination records during pregnancy to improve the performance of the preterm birth screening model.
Methods
This study attempts to use continuous electronic medical record (EMR) data from pregnant women to construct a preterm birth prediction classifier based on long short-term memory (LSTM) networks. Clinical data were collected from 5187 pregnant Chinese women who gave birth with natural vaginal delivery. The data included more than 25,000 obstetric EMRs from the early trimester to 28 weeks of gestation. The area under the curve (AUC), accuracy, sensitivity, and specificity were used to assess the performance of the prediction model.
Results
Compared with a traditional cross-sectional study, the LSTM model in this time-series study had better overall prediction ability and a lower misdiagnosis rate at the same detection rate. Accuracy was 0.739, sensitivity was 0.407, specificity was 0.982, and the AUC was 0.651. Important-feature identification indicated that blood pressure, blood glucose, lipids, uric acid, and other metabolic factors were important factors related to preterm birth.
Conclusions
The results of this study will be helpful to the formulation of guidelines for the prevention and treatment of preterm birth, and will help clinicians make correct decisions during obstetric examinations. The time-series model has advantages for preterm birth prediction.
Subject
Health Information Management,Health Informatics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献