A Tablet-Based App for Carpal Tunnel Syndrome Screening: Diagnostic Case-Control Study

Author:

Fujita KojiORCID,Watanabe TakuroORCID,Kuroiwa TomoyukiORCID,Sasaki ToruORCID,Nimura AkimotoORCID,Sugiura YutaORCID

Abstract

Background Carpal tunnel syndrome (CTS), the most common neuropathy, is caused by a compression of the median nerve in the carpal tunnel and is related to aging. The initial symptom is numbness and pain of the median nerve distributed in the hand area, while thenar muscle atrophy occurs in advanced stages. This atrophy causes failure of thumb motion and results in clumsiness; even after surgery, thenar atrophy does not recover for an extended period. Medical examination and electrophysiological testing are useful to diagnose CTS; however, visits to the doctor tend to be delayed because patients neglect the symptom of numbness in the hand. To avoid thenar atrophy-related clumsiness, early detection of CTS is important. Objective To establish a CTS screening system without medical examination, we have developed a tablet-based CTS detection system, focusing on movement of the thumb in CTS patients; we examined the accuracy of this screening system. Methods A total of 22 female CTS patients, involving 29 hands, and 11 female non-CTS participants were recruited. The diagnosis of CTS was made by hand surgeons based on electrophysiological testing. We developed an iPad-based app that recorded the speed and timing of thumb movements while playing a short game. A support vector machine (SVM) learning algorithm was then used by comparing the thumb movements in each direction among CTS and non-CTS groups with leave-one-out cross-validation; with this, we conducted screening for CTS in real time. Results The maximum speed of thumb movements between CTS and non-CTS groups in each direction did not show any statistically significant difference. The CTS group showed significantly slower average thumb movement speed in the 3 and 6 o’clock directions (P=.03 and P=.005, respectively). The CTS group also took a significantly longer time to reach the points in the 2, 3, 4, 5, 6, 8, 9, and 11 o’clock directions (P<.05). Cross-validation revealed that 27 of 29 CTS hands (93%) were classified as having CTS, while 2 of 29 CTS hands (7%) did not have CTS. CTS and non-CTS were classified with 93% sensitivity and 73% specificity. Conclusions Our newly developed app could classify disturbance of thumb opposition movement and could be useful as a screening test for CTS patients. Outside of the clinic, this app might be able to detect middle-to-severe-stage CTS and prompt these patients to visit a hand surgery specialist; this may also lead to medical cost-savings.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3