Clinical Source Data Production and Quality Control in Real-world Studies: Proposal for Development of the eSource Record System

Author:

Wang BinORCID,Lai JunkaiORCID,Jin FeifeiORCID,Liao XiwenORCID,Zhu HuanORCID,Yao ChenORCID

Abstract

Background An eSource generally includes the direct capture, collection, and storage of electronic data to simplify clinical research. It can improve data quality and patient safety and reduce clinical trial costs. There has been some eSource-related research progress in relatively large projects. However, most of these studies focused on technical explorations to improve interoperability among systems to reuse retrospective data for research. Few studies have explored source data collection and quality control during prospective data collection from a methodological perspective. Objective This study aimed to design a clinical source data collection method that is suitable for real-world studies and meets the data quality standards for clinical research and to improve efficiency when writing electronic medical records (EMRs). Methods On the basis of our group’s previous research experience, TransCelerate BioPharm Inc eSource logical architecture, and relevant regulations and guidelines, we designed a source data collection method and invited relevant stakeholders to optimize it. On the basis of this method, we proposed the eSource record (ESR) system as a solution and invited experts with different roles in the contract research organization company to discuss and design a flowchart for data connection between the ESR and electronic data capture (EDC). Results The ESR method included 5 steps: research project preparation, initial survey collection, in-hospital medical record writing, out-of-hospital follow-up, and electronic case report form (eCRF) traceability. The data connection between the ESR and EDC covered the clinical research process from creating the eCRF to collecting data for the analysis. The intelligent data acquisition function of the ESR will automatically complete the empty eCRF to create an eCRF with values. When the clinical research associate and data manager conduct data verification, they can query the certified copy database through interface traceability and send data queries. The data queries are transmitted to the ESR through the EDC interface. The EDC and EMR systems interoperate through the ESR. The EMR and EDC systems transmit data to the ESR system through the data standards of the Health Level Seven Clinical Document Architecture and the Clinical Data Interchange Standards Consortium operational data model, respectively. When the implemented data standards for a given system are not consistent, the ESR will approach the problem by first automating mappings between standards and then handling extensions or corrections to a given data format through human evaluation. Conclusions The source data collection method proposed in this study will help to realize eSource’s new strategy. The ESR solution is standardized and sustainable. It aims to ensure that research data meet the attributable, legible, contemporaneous, original, accurate, complete, consistent, enduring, and available standards for clinical research data quality and to provide a new model for prospective data collection in real-world studies.

Publisher

JMIR Publications Inc.

Subject

General Medicine

Reference46 articles.

1. Real-World Evidence — What Is It and What Can It Tell Us?

2. Use of real-world evidence to support regulatory decision-making for medical devicesFood and Drug Administration (FDA)20178312021-09-19https://www.fda.gov/media/99447/download

3. FDA Framework for FDA's real-world evidence programFood and Drug Administration (FDA)2018122021-09-13https://www.fda.gov/media/120060/download

4. The Real-World Data Challenges Radar: A Review on the Challenges and Risks regarding the Use of Real-World Data

5. E6(R2) Good clinical practice: integrated addendum to ICH E6(R1)Food and Drug Administration (FDA)201832021-08-24https://www.fda.gov/regulatory-information/search-fda-guidance-documents/e6r2-good-clinical-practice-integrated-addendum-ich-e6r1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3