A Bayesian Network to Predict the Risk of Post Influenza Vaccination Guillain-Barré Syndrome: Development and Validation Study

Author:

Huang YunORCID,Luo ChongliangORCID,Jiang YingORCID,Du JingchengORCID,Tao CuiORCID,Chen YongORCID,Hao YuantaoORCID

Abstract

Background Identifying the key factors of Guillain-Barré syndrome (GBS) and predicting its occurrence are vital for improving the prognosis of patients with GBS. However, there are scarcely any publications on a forewarning model of GBS. A Bayesian network (BN) model, which is known to be an accurate, interpretable, and interaction-sensitive graph model in many similar domains, is worth trying in GBS risk prediction. Objective The aim of this study is to determine the most significant factors of GBS and further develop and validate a BN model for predicting GBS risk. Methods Large-scale influenza vaccine postmarketing surveillance data, including 79,165 US (obtained from the Vaccine Adverse Event Reporting System between 1990 and 2017) and 12,495 European (obtained from the EudraVigilance system between 2003 and 2016) adverse events (AEs) reports, were extracted for model development and validation. GBS, age, gender, and the top 50 prevalent AEs were included for initial BN construction using the R package bnlearn. Results Age, gender, and 10 AEs were identified as the most significant factors of GBS. The posttest probability of GBS suggested that male vaccinees aged 50-64 years and without erythema should be on the alert or be warned by clinicians about an increased risk of GBS, especially when they also experience symptoms of asthenia, hypesthesia, muscular weakness, or paresthesia. The established BN model achieved an area under the receiver operating characteristic curve of 0.866 (95% CI 0.865-0.867), sensitivity of 0.752 (95% CI 0.749-0.756), specificity of 0.882 (95% CI 0.879-0.885), and accuracy of 0.882 (95% CI 0.879-0.884) for predicting GBS risk during the internal validation and obtained values of 0.829, 0.673, 0.854, and 0.843 for area under the receiver operating characteristic curve, sensitivity, specificity, and accuracy, respectively, during the external validation. Conclusions The findings of this study illustrated that a BN model can effectively identify the most significant factors of GBS, improve understanding of the complex interactions among different postvaccination symptoms through its graphical representation, and accurately predict the risk of GBS. The established BN model could further assist clinical decision-making by providing an estimated risk of GBS for a specific vaccinee or be developed into an open-access platform for vaccinees’ self-monitoring.

Publisher

JMIR Publications Inc.

Subject

Public Health, Environmental and Occupational Health,Health Informatics

Reference39 articles.

1. Influenza (flu) vaccine (inactivated or recombinant): what you need to knowCenters for Disease Control and Prevention20192020-06-14https://www.cdc.gov/vaccines/hcp/vis/current-vis.html

2. Guillain-Barré syndrome

3. Guillain-Barré syndrome after exposure to influenza virus

4. Population Incidence of Guillain-Barré Syndrome: A Systematic Review and Meta-Analysis

5. GUILLAIN-BARRE SYNDROME FOLLOWING VACCINATION IN THE NATIONAL INFLUENZA IMMUNIZATION PROGRAM, UNITED STATES, 1976–19771

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3