Prediction of Antibody-Antigen Binding via Machine Learning: Development of Data Sets and Evaluation of Methods

Author:

Ye ChaoORCID,Hu WenxingORCID,Gaeta BrunoORCID

Abstract

Background The mammalian immune system is able to generate antibodies against a huge variety of antigens, including bacteria, viruses, and toxins. The ultradeep DNA sequencing of rearranged immunoglobulin genes has considerable potential in furthering our understanding of the immune response, but it is limited by the lack of a high-throughput, sequence-based method for predicting the antigen(s) that a given immunoglobulin recognizes. Objective As a step toward the prediction of antibody-antigen binding from sequence data alone, we aimed to compare a range of machine learning approaches that were applied to a collated data set of antibody-antigen pairs in order to predict antibody-antigen binding from sequence data. Methods Data for training and testing were extracted from the Protein Data Bank and the Coronavirus Antibody Database, and additional antibody-antigen pair data were generated by using a molecular docking protocol. Several machine learning methods, including the weighted nearest neighbor method, the nearest neighbor method with the BLOSUM62 matrix, and the random forest method, were applied to the problem. Results The final data set contained 1157 antibodies and 57 antigens that were combined in 5041 antibody-antigen pairs. The best performance for the prediction of interactions was obtained by using the nearest neighbor method with the BLOSUM62 matrix, which resulted in around 82% accuracy on the full data set. These results provide a useful frame of reference, as well as protocols and considerations, for machine learning and data set creation in the prediction of antibody-antigen binding. Conclusions Several machine learning approaches were compared to predict antibody-antigen interaction from protein sequences. Both the data set (in CSV format) and the machine learning program (coded in Python) are freely available for download on GitHub.

Publisher

JMIR Publications Inc.

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3