Prediction of In-Hospital Cardiac Arrest in the Intensive Care Unit: Machine Learning–Based Multimodal Approach

Author:

Lee Hsin-YingORCID,Kuo Po-ChihORCID,Qian FrankORCID,Li Chien-HungORCID,Hu Jiun-RueyORCID,Hsu Wan-TingORCID,Jhou Hong-JieORCID,Chen Po-HuangORCID,Lee Cho-HaoORCID,Su Chin-HuaORCID,Liao Po-ChunORCID,Wu I-JuORCID,Lee Chien-ChangORCID

Abstract

Abstract Background Early identification of impending in-hospital cardiac arrest (IHCA) improves clinical outcomes but remains elusive for practicing clinicians. Objective We aimed to develop a multimodal machine learning algorithm based on ensemble techniques to predict the occurrence of IHCA. Methods Our model was developed by the Multiparameter Intelligent Monitoring of Intensive Care (MIMIC)–IV database and validated in the Electronic Intensive Care Unit Collaborative Research Database (eICU-CRD). Baseline features consisting of patient demographics, presenting illness, and comorbidities were collected to train a random forest model. Next, vital signs were extracted to train a long short-term memory model. A support vector machine algorithm then stacked the results to form the final prediction model. Results Of 23,909 patients in the MIMIC-IV database and 10,049 patients in the eICU-CRD database, 452 and 85 patients, respectively, had IHCA. At 13 hours in advance of an IHCA event, our algorithm had already demonstrated an area under the receiver operating characteristic curve of 0.85 (95% CI 0.815‐0.885) in the MIMIC-IV database. External validation with the eICU-CRD and National Taiwan University Hospital databases also presented satisfactory results, showing area under the receiver operating characteristic curve values of 0.81 (95% CI 0.763-0.851) and 0.945 (95% CI 0.934-0.956), respectively. Conclusions Using only vital signs and information available in the electronic medical record, our model demonstrates it is possible to detect a trajectory of clinical deterioration up to 13 hours in advance. This predictive tool, which has undergone external validation, could forewarn and help clinicians identify patients in need of assessment to improve their overall prognosis.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3