An Assessment of the Predictive Performance of Current Machine Learning–Based Breast Cancer Risk Prediction Models: Systematic Review

Author:

Gao YingORCID,Li ShuORCID,Jin YujingORCID,Zhou LengxiaoORCID,Sun ShaomeiORCID,Xu XiaoqianORCID,Li ShuqianORCID,Yang HongxiORCID,Zhang QingORCID,Wang YaogangORCID

Abstract

Background Several studies have explored the predictive performance of machine learning–based breast cancer risk prediction models and have shown controversial conclusions. Thus, the performance of the current machine learning–based breast cancer risk prediction models and their benefits and weakness need to be evaluated for the future development of feasible and efficient risk prediction models. Objective The aim of this review was to assess the performance and the clinical feasibility of the currently available machine learning–based breast cancer risk prediction models. Methods We searched for papers published until June 9, 2021, on machine learning–based breast cancer risk prediction models in PubMed, Embase, and Web of Science. Studies describing the development or validation models for predicting future breast cancer risk were included. The Prediction Model Risk of Bias Assessment Tool (PROBAST) was used to assess the risk of bias and the clinical applicability of the included studies. The pooled area under the curve (AUC) was calculated using the DerSimonian and Laird random-effects model. Results A total of 8 studies with 10 data sets were included. Neural network was the most common machine learning method for the development of breast cancer risk prediction models. The pooled AUC of the machine learning–based optimal risk prediction model reported in each study was 0.73 (95% CI 0.66-0.80; approximate 95% prediction interval 0.56-0.96), with a high level of heterogeneity between studies (Q=576.07, I2=98.44%; P<.001). The results of head-to-head comparison of the performance difference between the 2 types of models trained by the same data set showed that machine learning models had a slightly higher advantage than traditional risk factor–based models in predicting future breast cancer risk. The pooled AUC of the neural network–based risk prediction model was higher than that of the nonneural network–based optimal risk prediction model (0.71 vs 0.68, respectively). Subgroup analysis showed that the incorporation of imaging features in risk models resulted in a higher pooled AUC than the nonincorporation of imaging features in risk models (0.73 vs 0.61; Pheterogeneity=.001, respectively). The PROBAST analysis indicated that many machine learning models had high risk of bias and poorly reported calibration analysis. Conclusions Our review shows that the current machine learning–based breast cancer risk prediction models have some technical pitfalls and that their clinical feasibility and reliability are unsatisfactory.

Publisher

JMIR Publications Inc.

Subject

Public Health, Environmental and Occupational Health,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3