Challenges in Acceptance and Compliance in Digital Health Assessments During Pregnancy: Prospective Cohort Study

Author:

Brusniak KatharinaORCID,Arndt Hannah MariaORCID,Feisst ManuelORCID,Haßdenteufel KathrinORCID,Matthies Lina MariaORCID,Deutsch Thomas MaximilianORCID,Hudalla HannesORCID,Abele HaraldORCID,Wallwiener MarkusORCID,Wallwiener StephanieORCID

Abstract

Background Pregnant women are increasingly using mobile apps to access health information during the antenatal period. Therefore, digital health solutions can potentially be used as monitoring instruments during pregnancy. However, a main factor of success is high user engagement. Objective The aim of this study was to analyze engagement and factors influencing compliance in a longitudinal study targeting pregnant women using a digital health app with self-tracking. Methods Digitally collected data concerning demographics, medical history, technical aspects, and mental health from 585 pregnant women were analyzed. Patients filling out ≥80% of items at every study visit were considered to be highly compliant. Factors associated with high compliance were identified using logistic regression. The effect of a change in mental and physical well-being on compliance was assessed using a one-sample t test. Results Only 25% of patients could be considered compliant. Overall, 63% left at least one visit blank. Influential variables for higher engagement included higher education, higher income, private health insurance, nonsmoking, and German origin. There was no relationship between a change in the number of physical complaints or depressive symptoms and study dropout. Conclusions Maintaining high engagement with digital monitoring devices over a long time remains challenging. As cultural and socioeconomic background factors had the strongest influence, more effort needs to be directed toward understanding the needs of patients from different demographic backgrounds to ensure high-quality care for all patients. More studies need to report on compliance to disclose potential demographic bias.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3