Leprosy Screening Based on Artificial Intelligence: Development of a Cross-Platform App

Author:

De Souza Márcio Luís MoreiraORCID,Lopes Gabriel AyresORCID,Branco Alexandre CasteloORCID,Fairley Jessica KORCID,Fraga Lucia Alves De OliveiraORCID

Abstract

Background According to the World Health Organization, achieving targets for control of leprosy by 2030 will require disease elimination and interruption of transmission at the national or regional level. India and Brazil have reported the highest leprosy burden in the last few decades, revealing the need for strategies and tools to help health professionals correctly manage and control the disease. Objective The main objective of this study was to develop a cross-platform app for leprosy screening based on artificial intelligence (AI) with the goal of increasing accessibility of an accurate method of classifying leprosy treatment for health professionals, especially for communities further away from major diagnostic centers. Toward this end, we analyzed the quality of leprosy data in Brazil on the National Notifiable Diseases Information System (SINAN). Methods Leprosy data were extracted from the SINAN database, carefully cleaned, and used to build AI decision models based on the random forest algorithm to predict operational classification in paucibacillary or multibacillary leprosy. We used Python programming language to extract and clean the data, and R programming language to train and test the AI model via cross-validation. To allow broad access, we deployed the final random forest classification model in a web app via shinyApp using data available from the Brazilian Institute of Geography and Statistics and the Department of Informatics of the Unified Health System. Results We mapped the dispersion of leprosy incidence in Brazil from 2014 to 2018, and found a particularly high number of cases in central Brazil in 2014 that further increased in 2018 in the state of Mato Grosso. For some municipalities, up to 80% of cases showed some data discrepancy. Of a total of 21,047 discrepancies detected, the most common was “operational classification does not match the clinical form.” After data processing, we identified a total of 77,628 cases with missing data. The sensitivity and specificity of the AI model applied for the operational classification of leprosy was 93.97% and 87.09%, respectively. Conclusions The proposed app was able to recognize patterns in leprosy cases registered in the SINAN database and to classify new patients with paucibacillary or multibacillary leprosy, thereby reducing the probability of incorrect assignment by health centers. The collection and notification of data on leprosy in Brazil seem to lack specific validation to increase the quality of the data for implementations via AI. The AI models implemented in this work had satisfactory accuracy across Brazilian states and could be a complementary diagnosis tool, especially in remote areas with few specialist physicians.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference37 articles.

1. Detection of Mycobacterium lepromatosis in patients with leprosy in India

2. Global leprosy (Hansen disease) update, 2019: time to step-up prevention initiativesWorld Health Organization Weekly Epidemiological Record20192021-03-26https://www.who.int/publications/i/item/who-wer9536

3. Hanseníase no Brasil

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3