Preliminary Real-World Evidence Supporting the Efficacy of a Remote Neurofeedback System in Improving Mental Health: Retrospective Single-Group Pretest-Posttest Study

Author:

Whitehead Jocelyne CORCID,Neeman RonORCID,Doniger Glen MORCID

Abstract

Background Neurofeedback training (NFT) has been shown to be effective in treating several disorders (eg, attention-deficit/hyperactivity disorder [ADHD], anxiety, and depression); however, little is currently known regarding the effectiveness of remote NFT systems. Objective This retrospective study provides real-world data (N=593) to assess the efficacy of app-based remote NFT in improving brain health and cognitive performance. Methods Improvement was measured from pre- to postintervention of in-app assessments that included validated symptom questionnaires (the 12-item General Health Questionnaire, the ADHD Rating Scale IV, the Adult ADHD Self-Report Scale, the 7-item Generalized Anxiety Disorder scale, and the 9-item Patient Health Questionnaire), a cognitive test of attention and executive functioning (ie, continuous performance task), and resting electroencephalography (EEG) markers. Clinically significant improvement was evaluated using standard approaches. Results The greatest improvement was reported for the anxiety questionnaire, for which 69% (68/99) of participants moved from abnormal to healthy score ranges. Overall, adult and child participants who engaged in neurofeedback to improve attention and executive functions demonstrated improved ADHD scores and enhanced performance on a cognitive (ie, response inhibition) task. Adults with ADHD additionally demonstrated elevated delta/alpha and theta/alpha ratios at baseline and a reduction in the delta/alpha ratio indicator following neurofeedback. Conclusions Preliminary findings suggest the efficacy of app-based remote neurofeedback in improving mental health, given the reduced symptom severity from pre- to postassessment for general psychological health, ADHD, anxiety, and depression, as well as adjusted resting EEG neural markers for individuals with symptoms of ADHD. Collectively, this supports the utility of the in-app assessment in monitoring behavioral and neural indices of mental health.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3