Increased Online Aggression During COVID-19 Lockdowns: Two-Stage Study of Deep Text Mining and Difference-in-Differences Analysis

Author:

Hsu Jerome Tze-HouORCID,Tsai Richard Tzong-HanORCID

Abstract

Background The COVID-19 pandemic caused a critical public health crisis worldwide, and policymakers are using lockdowns to control the virus. However, there has been a noticeable increase in aggressive social behaviors that threaten social stability. Lockdown measures might negatively affect mental health and lead to an increase in aggressive emotions. Discovering the relationship between lockdown and increased aggression is crucial for formulating appropriate policies that address these adverse societal effects. We applied natural language processing (NLP) technology to internet data, so as to investigate the social and emotional impacts of lockdowns. Objective This research aimed to understand the relationship between lockdown and increased aggression using NLP technology to analyze the following 3 kinds of aggressive emotions: anger, offensive language, and hate speech, in spatiotemporal ranges of tweets in the United States. Methods We conducted a longitudinal internet study of 11,455 Twitter users by analyzing aggressive emotions in 1,281,362 tweets they posted from 2019 to 2020. We selected 3 common aggressive emotions (anger, offensive language, and hate speech) on the internet as the subject of analysis. To detect the emotions in the tweets, we trained a Bidirectional Encoder Representations from Transformers (BERT) model to analyze the percentage of aggressive tweets in every state and every week. Then, we used the difference-in-differences estimation to measure the impact of lockdown status on increasing aggressive tweets. Since most other independent factors that might affect the results, such as seasonal and regional factors, have been ruled out by time and state fixed effects, a significant result in this difference-in-differences analysis can not only indicate a concrete positive correlation but also point to a causal relationship. Results In the first 6 months of lockdown in 2020, aggression levels in all users increased compared to the same period in 2019. Notably, users under lockdown demonstrated greater levels of aggression than those not under lockdown. Our difference-in-differences estimation discovered a statistically significant positive correlation between lockdown and increased aggression (anger: P=.002, offensive language: P<.001, hate speech: P=.005). It can be inferred from such results that there exist causal relations. Conclusions Understanding the relationship between lockdown and aggression can help policymakers address the personal and societal impacts of lockdown. Applying NLP technology and using big data on social media can provide crucial and timely information for this effort.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3