Quality of Deaf and Hard-of-Hearing Mobile Apps: Evaluation Using the Mobile App Rating Scale (MARS) With Additional Criteria From a Content Expert

Author:

Romero Ryan LeeORCID,Kates FrederickORCID,Hart MarkORCID,Ojeda AmandaORCID,Meirom ItaiORCID,Hardy StephenORCID

Abstract

Background The spread of technology and dissemination of knowledge across the World Wide Web has prompted the development of apps for American Sign Language (ASL) translation, interpretation, and syntax recognition. There is limited literature regarding the quality, effectiveness, and appropriateness of mobile health (mHealth) apps for the deaf and hard-of-hearing (DHOH) that pose to aid the DHOH in their everyday communication and activities. Other than the star-rating system with minimal comments regarding quality, the evaluation metrics used to rate mobile apps are commonly subjective. Objective This study aimed to evaluate the quality and effectiveness of DHOH apps using a standardized scale. In addition, it also aimed to identify content-specific criteria to improve the evaluation process by using a content expert, and to use the content expert to more accurately evaluate apps and features supporting the DHOH. Methods A list of potential apps for evaluation was generated after a preliminary screening for apps related to the DHOH. Inclusion and exclusion criteria were developed to refine the master list of apps. The study modified a standardized rating scale with additional content-specific criteria applicable to the DHOH population for app evaluation. This was accomplished by including a DHOH content expert in the design of content-specific criteria. Results The results indicate a clear distinction in Mobile App Rating Scale (MARS) scores among apps within the study’s three app categories: ASL translators (highest score=3.72), speech-to-text (highest score=3.6), and hard-of-hearing assistants (highest score=3.90). Of the 217 apps obtained from the search criteria, 21 apps met the inclusion and exclusion criteria. Furthermore, the limited consideration for measures specific to the target population along with a high app turnover rate suggests opportunities for improved app effectiveness and evaluation. Conclusions As more mHealth apps enter the market for the DHOH population, more criteria-based evaluation is needed to ensure the safety and appropriateness of the apps for the intended users. Evaluation of population-specific mHealth apps can benefit from content-specific measurement criteria developed by a content expert in the field.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference44 articles.

1. Digital continuous healthcare and disruptive medical technologies: m-Health and telemedicine skills training for data-driven healthcare

2. Medical Apps for Smartphones

3. Statista2019-02-23Number of Mobile App Downloads Worldwide From 2016 to 2018https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/

4. Census2018-12-12Americans With Disabilities: 2010https://www.census.gov/library/publications/2012/demo/p70-131.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3