Predicting Adherence to Behavior Change Support Systems Using Machine Learning: Systematic Review

Author:

Ekpezu Akon ObuORCID,Wiafe IsaacORCID,Oinas-Kukkonen HarriORCID

Abstract

Background There is a dearth of knowledge on reliable adherence prediction measures in behavior change support systems (BCSSs). Existing reviews have predominately focused on self-reporting measures of adherence. These measures are susceptible to overestimation or underestimation of adherence behavior. Objective This systematic review seeks to identify and summarize trends in the use of machine learning approaches to predict adherence to BCSSs. Methods Systematic literature searches were conducted in the Scopus and PubMed electronic databases between January 2011 and August 2022. The initial search retrieved 2182 journal papers, but only 11 of these papers were eligible for this review. Results A total of 4 categories of adherence problems in BCSSs were identified: adherence to digital cognitive and behavioral interventions, medication adherence, physical activity adherence, and diet adherence. The use of machine learning techniques for real-time adherence prediction in BCSSs is gaining research attention. A total of 13 unique supervised learning techniques were identified and the majority of them were traditional machine learning techniques (eg, support vector machine). Long short-term memory, multilayer perception, and ensemble learning are currently the only advanced learning techniques. Despite the heterogeneity in the feature selection approaches, most prediction models achieved good classification accuracies. This indicates that the features or predictors used were a good representation of the adherence problem. Conclusions Using machine learning algorithms to predict the adherence behavior of a BCSS user can facilitate the reinforcement of adherence behavior. This can be achieved by developing intelligent BCSSs that can provide users with more personalized, tailored, and timely suggestions.

Publisher

JMIR Publications Inc.

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3