Evaluation of Ambient Sensor Systems for the Early Detection of Heart Failure Decompensation in Older Patients Living at Home Alone: Protocol for a Prospective Cohort Study

Author:

Vögeli BenjaminORCID,Arenja NishaORCID,Schütz NarayanORCID,Nef TobiasORCID,Buluschek PhilippORCID,Saner HugoORCID

Abstract

Background The results of telemedicine intervention studies in patients with heart failure (HF) to reduce rehospitalization rate and mortality by early detection of HF decompensation are encouraging. However, the benefits are lower than expected. A possible reason for this could be the fact that vital signs, including blood pressure, heart rate, heart rhythm, and weight changes, may not be ideal indicators of the early stages of HF decompensation but are more sensitive for acute events triggered by ischemic episodes or rhythm disturbances. Preliminary results indicate a potential role of ambient sensor–derived digital biomarkers in this setting. Objective The aim of this study is to identify changes in ambient sensor system–derived digital biomarkers with a high potential for early detection of HF decompensation. Methods This is a prospective interventional cohort study. A total of 24 consecutive patients with HF aged 70 years and older, living alone, and hospitalized for HF decompensation will be included. Physical activity in the apartment and toilet visits are quantified using a commercially available, passive, infrared motion sensing system (DomoHealth SA). Heart rate, respiration rate, and toss-and-turns in bed are recorded by using a commercially available Emfit QS device (Emfit Ltd), which is a contact-free piezoelectric sensor placed under the participant’s mattress. Sensor data are visualized on a dedicated dashboard for easy monitoring by health professionals. Digital biomarkers are evaluated for predefined signs of HF decompensation, including particularly decreased physical activity; time spent in bed; increasing numbers of toilet visits at night; and increasing heart rate, respiration rate, and motion in bed at night. When predefined changes in digital biomarkers occur, patients will be called in for clinical evaluation, and N-terminal pro b-type natriuretic peptide measurement (an increase of >30% considered as significant) will be performed. The sensitivity and specificity of the different biomarkers and their combinations for the detection of HF decompensation will be calculated. Results The study is in the data collection phase. Study recruitment started in February 2024. Data analysis is scheduled to start after all data are collected. As of manuscript submission, 5 patients have been recruited. Results are expected to be published by the end of 2025. Conclusions The results of this study will add to the current knowledge about opportunities for telemedicine to monitor older patients with HF living at home alone by evaluating the potential of ambient sensor systems for this purpose. Timely recognition of HF decompensation could enable proactive management, potentially reducing health care costs associated with preventable emergency presentations or hospitalizations. Trial Registration ClinicalTrials.gov NCT06126848; https://clinicaltrials.gov/study/NCT06126848 International Registered Report Identifier (IRRID) PRR1-10.2196/55953

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3