Artificial Intelligence–Assisted Diagnosis of Anterior Cruciate Ligament Tears From Magnetic Resonance Images: Algorithm Development and Validation Study

Author:

Chen Kun-HuiORCID,Yang Chih-YuORCID,Wang Hsin-YiORCID,Ma Hsiao-LiORCID,Lee Oscar Kuang-ShengORCID

Abstract

Background Anterior cruciate ligament (ACL) injuries are common in sports and are critical knee injuries that require prompt diagnosis. Magnetic resonance imaging (MRI) is a strong, noninvasive tool for detecting ACL tears, which requires training to read accurately. Clinicians with different experiences in reading MR images require different information for the diagnosis of ACL tears. Artificial intelligence (AI) image processing could be a promising approach in the diagnosis of ACL tears. Objective This study sought to use AI to (1) diagnose ACL tears from complete MR images, (2) identify torn-ACL images from complete MR images with a diagnosis of ACL tears, and (3) differentiate intact-ACL and torn-ACL MR images from the selected MR images. Methods The sagittal MR images of torn ACL (n=1205) and intact ACL (n=1018) from 800 cases and the complete knee MR images of 200 cases (100 torn ACL and 100 intact ACL) from patients aged 20-40 years were retrospectively collected. An AI approach using a convolutional neural network was applied to build models for the objective. The MR images of 200 independent cases (100 torn ACL and 100 intact ACL) were used as the test set for the models. The MR images of 40 randomly selected cases from the test set were used to compare the reading accuracy of ACL tears between the trained model and clinicians with different levels of experience. Results The first model differentiated between torn-ACL, intact-ACL, and other images from complete MR images with an accuracy of 0.9946, and the sensitivity, specificity, precision, and F1-score were 0.9344, 0.9743, 0.8659, and 0.8980, respectively. The final accuracy for ACL-tear diagnosis was 0.96. The model showed a significantly higher reading accuracy than less experienced clinicians. The second model identified torn-ACL images from complete MR images with a diagnosis of ACL tear with an accuracy of 0.9943, and the sensitivity, specificity, precision, and F1-score were 0.9154, 0.9660, 0.8167, and 0.8632, respectively. The third model differentiated torn- and intact-ACL images with an accuracy of 0.9691, and the sensitivity, specificity, precision, and F1-score were 0.9827, 0.9519, 0.9632, and 0.9728, respectively. Conclusions This study demonstrates the feasibility of using an AI approach to provide information to clinicians who need different information from MRI to diagnose ACL tears.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3