Machine Learning Models for Parkinson Disease: Systematic Review

Author:

Tabashum ThasinaORCID,Snyder Robert CooperORCID,O'Brien Megan KORCID,Albert Mark VORCID

Abstract

Abstract Background With the increasing availability of data, computing resources, and easier-to-use software libraries, machine learning (ML) is increasingly used in disease detection and prediction, including for Parkinson disease (PD). Despite the large number of studies published every year, very few ML systems have been adopted for real-world use. In particular, a lack of external validity may result in poor performance of these systems in clinical practice. Additional methodological issues in ML design and reporting can also hinder clinical adoption, even for applications that would benefit from such data-driven systems. Objective To sample the current ML practices in PD applications, we conducted a systematic review of studies published in 2020 and 2021 that used ML models to diagnose PD or track PD progression. Methods We conducted a systematic literature review in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines in PubMed between January 2020 and April 2021, using the following exact string: “Parkinson’s” AND (“ML” OR “prediction” OR “classification” OR “detection” or “artificial intelligence” OR “AI”). The search resulted in 1085 publications. After a search query and review, we found 113 publications that used ML for the classification or regression-based prediction of PD or PD-related symptoms. Results Only 65.5% (74/113) of studies used a holdout test set to avoid potentially inflated accuracies, and approximately half (25/46, 54%) of the studies without a holdout test set did not state this as a potential concern. Surprisingly, 38.9% (44/113) of studies did not report on how or if models were tuned, and an additional 27.4% (31/113) used ad hoc model tuning, which is generally frowned upon in ML model optimization. Only 15% (17/113) of studies performed direct comparisons of results with other models, severely limiting the interpretation of results. Conclusions This review highlights the notable limitations of current ML systems and techniques that may contribute to a gap between reported performance in research and the real-life applicability of ML models aiming to detect and predict diseases such as PD.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3