Assessing the Role of Social Bots During the COVID-19 Pandemic: Infodemic, Disagreement, and Criticism

Author:

Suarez-Lledo VictorORCID,Alvarez-Galvez JavierORCID

Abstract

BackgroundSocial media has changed the way we live and communicate, as well as offering unprecedented opportunities to improve many aspects of our lives, including health promotion and disease prevention. However, there is also a darker side to social media that is not always as evident as its possible benefits. In fact, social media has also opened the door to new social and health risks that are linked to health misinformation.ObjectiveThis study aimed to study the role of social media bots during the COVID-19 outbreak.MethodsThe Twitter streaming API was used to collect tweets regarding COVID-19 during the early stages of the outbreak. The Botometer tool was then used to obtain the likelihood of whether each account is a bot or not. Bot classification and topic-modeling techniques were used to interpret the Twitter conversation. Finally, the sentiment associated with the tweets was compared depending on the source of the tweet.ResultsRegarding the conversation topics, there were notable differences between the different accounts. The content of nonbot accounts was associated with the evolution of the pandemic, support, and advice. On the other hand, in the case of self-declared bots, the content consisted mainly of news, such as the existence of diagnostic tests, the evolution of the pandemic, and scientific findings. Finally, in the case of bots, the content was mostly political. Above all, there was a general overriding tone of criticism and disagreement. In relation to the sentiment analysis, the main differences were associated with the tone of the conversation. In the case of self-declared bots, this tended to be neutral, whereas the conversation of normal users scored positively. In contrast, bots tended to score negatively.ConclusionsBy classifying the accounts according to their likelihood of being bots and performing topic modeling, we were able to segment the Twitter conversation regarding COVID-19. Bot accounts tended to criticize the measures imposed to curb the pandemic, express disagreement with politicians, or question the veracity of the information shared on social media.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3