Heterogeneity of Prevalence of Social Media Addiction Across Multiple Classification Schemes: Latent Profile Analysis

Author:

Cheng CeciliaORCID,Ebrahimi Omid VORCID,Luk Jeremy WORCID

Abstract

Background As social media is a major channel of interpersonal communication in the digital age, social media addiction has emerged as a novel mental health issue that has raised considerable concerns among researchers, health professionals, policy makers, mass media, and the general public. Objective The aim of this study is to examine the prevalence of social media addiction derived from 4 major classification schemes (strict monothetic, strict polythetic, monothetic, and polythetic), with latent profiles embedded in the empirical data adopted as the benchmark for comparison. The extent of matching between the classification of each scheme and the actual data pattern was evaluated using sensitivity and specificity analyses. The associations between social media addiction and 2 comorbid mental health conditions—depression and anxiety—were investigated. Methods A cross-sectional web-based survey was conducted, and the replicability of findings was assessed in 2 independent samples comprising 573 adults from the United Kingdom (261/573, 45.6% men; mean age 43.62 years, SD 12.24 years) and 474 adults from the United States (224/474, 47.4% men; mean age 44.67 years, SD 12.99 years). The demographic characteristics of both samples were similar to those of their respective populations. Results The prevalence estimates of social media addiction varied across the classification schemes, ranging from 1% to 15% for the UK sample and 0% to 11% for the US sample. The latent profile analysis identified 3 latent groups for both samples: low-risk, at-risk, and high-risk. The sensitivity, specificity, and negative predictive values were high (83%-100%) for all classification schemes, except for the relatively lower sensitivity (73%-74%) for the polythetic scheme. However, the polythetic scheme had high positive predictive values (88%-94%), whereas such values were low (2%-43%) for the other 3 classification schemes. The group membership yielded by the polythetic scheme was largely consistent (95%-96%) with that of the benchmark. Conclusions Among the classification schemes, the polythetic scheme is more well-balanced across all 4 indices.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3