Social Media Surveillance for Outbreak Projection via Transmission Models: Longitudinal Observational Study

Author:

Safarishahrbijari AnahitaORCID,Osgood Nathaniel DORCID

Abstract

Background Although dynamic models are increasingly used by decision makers as a source of insight to guide interventions in order to control communicable disease outbreaks, such models have long suffered from a risk of rapid obsolescence due to failure to keep updated with emerging epidemiological evidence. The application of statistical filtering algorithms to high-velocity data streams has recently demonstrated effectiveness in allowing such models to be automatically regrounded by each new set of incoming observations. The attractiveness of such techniques has been enhanced by the emergence of a new generation of geospatially specific, high-velocity data sources, including daily counts of relevant searches and social media posts. The information available in such electronic data sources complements that of traditional epidemiological data sources. Objective This study aims to evaluate the degree to which the predictive accuracy of pandemic projection models regrounded via machine learning in daily clinical data can be enhanced by extending such methods to leverage daily search counts. Methods We combined a previously published influenza A (H1N1) pandemic projection model with the sequential Monte Carlo technique of particle filtering, to reground the model bu using confirmed incident case counts and search volumes. The effectiveness of particle filtering was evaluated using a norm discrepancy metric via predictive and dataset-specific cross-validation. Results Our results suggested that despite the data quality limitations of daily search volume data, the predictive accuracy of dynamic models can be strongly elevated by inclusion of such data in filtering methods. Conclusions The predictive accuracy of dynamic models can be notably enhanced by tapping a readily accessible, publicly available, high-velocity data source. This work highlights a low-cost, low-burden avenue for strengthening model-based outbreak intervention response planning using low-cost public electronic datasets.

Publisher

JMIR Publications Inc.

Subject

Public Health, Environmental and Occupational Health,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3