Information Loss in Harmonizing Granular Race and Ethnicity Data: Descriptive Study of Standards

Author:

Wang KarenORCID,Grossetta Nardini HollyORCID,Post LoriORCID,Edwards ToddORCID,Nunez-Smith MarcellaORCID,Brandt CynthiaORCID

Abstract

Background Data standards for race and ethnicity have significant implications for health equity research. Objective We aim to describe a challenge encountered when working with a multiple–race and ethnicity assessment in the Eastern Caribbean Health Outcomes Research Network (ECHORN), a research collaborative of Barbados, Puerto Rico, Trinidad and Tobago, and the US Virgin Islands. Methods We examined the data standards guiding harmonization of race and ethnicity data for multiracial and multiethnic populations, using the Office of Management and Budget (OMB) Statistical Policy Directive No. 15. Results Of 1211 participants in the ECHORN cohort study, 901 (74.40%) selected 1 racial category. Of those that selected 1 category, 13.0% (117/901) selected Caribbean; 6.4% (58/901), Puerto Rican or Boricua; and 13.5% (122/901), the mixed or multiracial category. A total of 17.84% (216/1211) of participants selected 2 or more categories, with 15.19% (184/1211) selecting 2 categories and 2.64% (32/1211) selecting 3 or more categories. With aggregation of ECHORN data into OMB categories, 27.91% (338/1211) of the participants can be placed in the “more than one race” category. Conclusions This analysis exposes the fundamental informatics challenges that current race and ethnicity data standards present to meaningful collection, organization, and dissemination of granular data about subgroup populations in diverse and marginalized communities. Current standards should reflect the science of measuring race and ethnicity and the need for multidisciplinary teams to improve evolving standards throughout the data life cycle.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference38 articles.

1. Social Determinants of Health

2. Translational Health Disparities Research in a Data-Rich World

3. Using electronic health record data for environmental and place based population health research: a systematic review

4. HEALTH DISPARITIES AND HEALTH EQUITY: Concepts and Measurement

5. Braveman P, Arkin E, Orleans T, Proctor D, Plough AWhat is Health Equity?Robert Woods Johnson Foundation2020-05-02https://www.rwjf.org/en/library/research/2017/05/what-is-health-equity-.html

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3